08054D101BAT2A [KYOCERA AVX]

Ceramic Chip Capacitors; 陶瓷芯片电容
08054D101BAT2A
型号: 08054D101BAT2A
厂家: KYOCERA AVX    KYOCERA AVX
描述:

Ceramic Chip Capacitors
陶瓷芯片电容

文件: 总99页 (文件大小:2759K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
AVX Surface Mount  
Ceramic Capacitor Products  
Version 9.4  
Ceramic Chip Capacitors  
Table of Contents  
How to Order - AVX Part Number Explanation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-3  
C0G (NP0) Dielectric  
General Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Specifications and Test Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Capacitance Range. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-7  
U Dielectric  
RF/Microwave C0G (NP0) Capaciators (RoHS) General Information and Capacitance Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-10  
RF/Microwave C0G (NP0) Capaciators (Sn/Pb) General Information and Capacitance Range. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-12  
Designer Kits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
X8R Dielectric  
General Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-15  
X7R Dielectric  
General Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Specifications and Test Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Capacitance Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18-19  
X7S Dielectric  
General Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Specifications and Test Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Capacitance Range. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
X5R Dielectric  
General Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Specifications and Test Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Capacitance Range. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Y5V Dielectric  
General Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Specifications and Test Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Capacitance Range. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
MLCC Tin/Lead Termination (LD Series)  
General Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Capacitance Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30-35  
MLCC Low Profile  
General Specifications / Capacitance Range. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
UltraThin Ceramic Capacitors  
General Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Automotive MLCC  
General Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38-39  
Capacitance Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40-42  
APS for COTS+ Applications  
General Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Capacitance Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44-45  
MLCC with FLEXITERM®  
General Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Specifications and Test Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47-48  
Capacitance Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49-50  
FLEXISAFE MLC Chips  
General Specifications and Capacitance Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
Capacitor Array  
Capacitor Array (IPC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52-55  
Automotive Capacitor Array (IPC). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
Multi-Value Capacitor Array (IPC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
Part and Pad Layout Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
Low Inductance Capacitors  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59-60  
LICC (Low Inductance Chip Capacitors) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61-64  
IDC (InterDigitated Capacitors). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65-68  
LGA Low Inductance Capacitors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69-70  
LICA (Low Inductance Decoupling Capacitor Arrays) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71-72  
High Voltage MLC Chips  
600V to 5000V Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73-74  
Tin/Lead Termination “B” - 600V to 5000V Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75-76  
MIL-PRF-55681/Chips  
CDR01 thru CDR06. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77-78  
CDR31 thru CDR35. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79-82  
Packaging of Chip Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
Embossed Carrier Configuration - 8 & 12mm Tape. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84  
Paper Carrier Configuration - 8 & 12mm Tape . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
Bulk Case Packaging. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86  
Basic Capacitor Formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87  
General Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88-92  
Surface Mounting Guide. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93-97  
1
How to Order  
Part Number Explanation  
Commercial Surface Mount Chips  
EXAMPLE: 08055A101JAT2A  
0805  
5
A
101  
J*  
A
T
2
A
Size  
Voltage  
Dielectric  
A = NP0(C0G)  
C = X7R  
D = X5R  
F = X8R  
G = Y5V  
U = U Series  
W = X6S  
Capacitance  
2 Sig. Fig +  
No. of Zeros  
Examples:  
Tolerance  
Failure  
Rate  
A = N/A  
Terminations  
T = Plated Ni  
and Sn  
7 = Gold Plated  
U = Conductive  
Expoxy for  
Packaging  
Available  
2 = 7" Reel  
4 = 13" Reel  
7 = Bulk Cass.  
9 = Bulk  
Special  
Code  
A = Std.  
(L" x W") 4 = 4V  
B = .10 pF  
0201  
0402  
0603  
0805  
1206  
1210  
1812  
1825  
2220  
2225  
6 = 6.3V  
Z = 10V  
Y = 16V  
3 = 25V  
D = 35V  
5 = 50V  
1 = 100V  
2 = 200V  
7 = 500V  
C = .25 pF  
D = .50 pF  
F = 1ꢀ (10 pF)  
G = 2ꢀ (10 pF)  
J = 5ꢀ  
4 = Automotive  
100 = 10 pF  
101 = 100 pF  
102 = 1000 pF  
223 = 22000 pF  
224 = 220000 pF M = 20ꢀ  
105 = 1µF  
Hybrid  
K = 10ꢀ  
Applications  
Z = FLEXITERM®  
X = FLEXITERM®  
with 5ꢀ min  
lead (X7R &  
X8R only)  
Contact  
Factory For  
Multiples  
Z = X7S  
Z = +80ꢀ, -20ꢀ  
P = +100ꢀ, -0ꢀ  
106 = 10µF  
107 = 100µF  
For values below  
10 pF, use “R”  
in place of  
Decimal point, e.g.,  
9.1 pF = 9R1.  
Contact Factory for  
Special Voltages  
F = 63V  
* = 75V  
E = 150V 8 = 400V  
V = 250V  
Contact  
Factory For  
1 = Pd/Ag Term  
9 = 300V  
X = 350V  
* B, C & D tolerance for 10 pF values.  
Standard Tape and Reel material (Paper/Embossed) depends upon chip  
size and thickness.  
See individual part tables for tape material type for each capacitance value.  
NOTE: Contact factory for availability of Termination and Tolerance Options for Specific Part Numbers.  
For Tin/Lead Terminations, please refer to LD Series  
High Voltage MLC Chips  
EXAMPLE: 1808AA271KA11A  
1808  
A
A
271  
K
A
T
1
A
AVX  
Style  
0805  
1206  
1210  
1808  
1812  
1825  
2220  
2225  
3640  
Voltage  
Temperature Capacitance Capacitance  
Failure  
Rate  
Packaging/  
Marking  
1 = 7" Reel  
3 = 13" Reel  
9 = Bulk  
Special  
Code  
A = Standard  
Termination  
C = 600V/630V Coefficient  
Code  
(2 significant digits  
+ no. of zeros)  
Examples:  
10 pF = 100  
100 pF = 101  
Tolerance  
C0G: J = 5ꢀ  
K = 10ꢀ  
M = 20ꢀ  
X7R: K = 10ꢀ  
M = 20ꢀ  
1= Pd/Ag  
A = 1000V  
S = 1500V  
G = 2000V  
W = 2500V  
H = 3000V  
J = 4000V  
K = 5000V  
A = C0G  
C = X7R  
A=Not  
T = Plated Ni  
and Sn  
B = 5ꢀ Min Pb  
Z = FLEXITERM®  
X = FLEXITERM®  
with 5ꢀ min  
Applicable  
1,000 pF = 102  
22,000 pF = 223  
220,000 pF = 224  
1 µF = 105  
Z = +80ꢀ,  
-20ꢀ  
lead (X7R only)  
NOTE: Contact factory for availability of Termination and Tolerance Options for Specific Part Numbers.  
For Tin/Lead Terminations, please refer to LD Series  
2
How to Order  
Part Number Explanation  
Capacitor Array  
EXAMPLE: W2A43C103MAT2A  
W
2
A
4
3
C
103  
M
A
T
2A  
Style  
W = RoHS  
L = SnPb  
Case Array Number Voltage Dielectric Capacitance Capacitance  
Failure  
Rate  
Termination  
Code  
Packaging &  
Quantity  
Code  
Size  
of Caps  
Code (In pF)  
2 Sig Digits +  
Number of  
Zeros  
Tolerance  
Z = 10V  
Y = 16V  
3 = 25V  
5 = 50V  
1 = 100V  
A = NP0  
C = X7R  
D = X5R  
1 = 0405  
2 = 0508  
3 = 0612  
J = 5ꢀ A = Commercial T = Plated Ni and Sn  
K = 10ꢀ 4 = Automotive Z = FLEXITERM®  
2A = 7" Reel  
(4000)  
M = 20ꢀ  
B = 5ꢀ min lead  
X = FLEXITERM®  
with 5ꢀ min lead  
4A = 13" Reel  
(10000)  
2F = 7" Reel  
(1000)  
NOTE: Contact factory for availability of Termination and Tolerance Options for Specific Part Numbers.  
Low Inductance Capacitors (LICC)  
EXAMPLE: 0612ZD105MAT2A  
0612  
Z
D
105  
M
A
T
2
A
Size  
0306  
0508  
0612  
LD16  
LD17  
LD18  
Voltage  
6 = 6.3V  
Z = 10V  
Y = 16V  
3 = 25V  
5 = 50V  
Dielectric  
C = X7R  
D = X5R  
Capacitance  
Code (In pF)  
2 Sig. Digits +  
Number of Zeros  
Capacitance  
Tolerance  
K = 10ꢀ  
Failure Rate Terminations  
Packaging  
Available  
2 = 7" Reel  
4 = 13" Reel  
Thickness  
See Page 64  
for Codes  
A = N/A  
T = Plated Ni  
and Sn  
B = 5ꢀ min  
lead  
M = 20ꢀ  
NOTE: Contact factory for availability of Termination and Tolerance Options for Specific Part Numbers.  
Interdigitated Capacitors (IDC)  
EXAMPLE: W3L16D225MAT3A  
225  
M
W
3
L
1
6
D
A
T
3
A
Capacitance Capacitance  
Style  
W = RoHS  
L = SnPb  
Case  
Size  
Low  
Number  
of  
Terminals  
1 = 8 Terminals  
Voltage  
4 = 4V  
6 = 6.3V  
Z = 10V  
Y = 16V  
Dielectric  
C = X7R  
D = X5R  
Failure  
Rate  
A = N/A  
Termination Packaging  
Thickness  
Max. Thickness  
mm (in.)  
Code (In pF)  
2 Sig. Digits +  
Number of  
Zeros  
Tolerance  
Inductance  
T = Plated Ni  
and Sn  
Available  
M = 20  
2 = 0508 ESL = 50pH  
3 = 0612 ESL = 60pH  
1=7" Reel  
3=13" Reel A=0.95 (0.037)  
S=0.55 (0.022)  
B = 5ꢀ min  
Lead  
NOTE: Contact factory for availability of Termination and Tolerance Options for Specific Part Numbers.  
Low Inductance Decoupling Capacitor Arrays (LICA)  
EXAMPLE: LICA3T183M3FC4AA  
4
A
A
LICA  
3
T
102  
M
3
F
C
# of  
Inspection  
Code  
Code  
Face  
Style Voltage Dielectric Cap/Section Capacitance Height  
Termination  
Reel Packaging  
Caps/Part  
&
5V = 9 D = X5R  
(EIA Code)  
Tolerance  
Code  
F = C4 Solder  
M = 7" Reel  
1 = one A = Standard  
2 = two B = Established B = No Bar  
4 = four  
A = Bar  
Size  
10V = Z T = T55T 102 = 1000 pF M = 20ꢀ 6 = 0.500mm  
25V = 3 S = High K 103 = 10 nF  
T55T 104 = 100 nF  
Balls- 97Pb/3Sn R = 13" Reel  
P = GMV 3 = 0.650mm H = C4 Solder  
6 = 2"x2" Waffle Pack  
1 = 0.875mm  
Balls–Low ESR 8 = 2"x2" Black Waffle  
Reliability  
Testing  
C = Dot, S55S  
Dielectrics  
D = Triangle  
5 = 1.100mm P = Cr-Cu-Au  
7 = 1.600mm N = Cr-Ni-Au  
X = None  
Pack  
7 = 2"x2" Waffle Pack  
w/ termination  
facing up  
A = 2"x2" Black Waffle  
Pack  
w/ termination  
facing up  
C = 4"x4" Waffle Pack  
w/ clear lid  
NOTE: Contact factory for availability of Termination and  
Tolerance Options for Specific Part Numbers.  
3
C0G (NP0) Dielectric  
General Specifications  
C0G (NP0) is the most popular formulation of the  
“temperature-compensating,” EIA Class I ceramic materials.  
Modern C0G (NP0) formulations contain neodymium,  
samarium and other rare earth oxides.  
C0G (NP0) ceramics offer one of the most stable capacitor  
dielectrics available. Capacitance change with temperature  
is 0 30ppm/ꢁC which is less than 0.3ꢀ C from -55ꢁC  
to +125ꢁC. Capacitance drift or hysteresis for C0G (NP0)  
ceramics is negligible at less than 0.05ꢀ versus up to  
2ꢀ for films. Typical capacitance change with life is less  
than 0.1ꢀ for C0G (NP0), one-fifth that shown by most  
other dielectrics. C0G (NP0) formulations show no aging  
characteristics.  
PART NUMBER (see page 2 for complete part number explanation)  
0805  
A
101  
J
A
T
2
A
5
Size  
(L" x W")  
Dielectric  
C0G (NP0) = A  
Capacitance  
Code (In pF)  
2 Sig. Digits +  
Number of  
Zeros  
Capacitance  
Tolerance  
Failure  
Rate  
A = Not  
Applicable  
Terminations  
T = Plated Ni  
and Sn  
Packaging  
2 = 7" Reel  
Special  
Code  
A = Std.  
Product  
Voltage  
6.3V = 6  
10V = Z  
16V = Y  
25V = 3  
50V = 5  
100V = 1  
200V = 2  
500V = 7  
B = .10 pF (ꢂ10pF)  
C = .25 pF (ꢂ10pF)  
D = .50 pF (ꢂ10pF)  
4 = 13" Reel  
7 = Bulk Cass.  
9 = Bulk  
7 = Gold Plated  
F
=
1ꢀ (10 pF)  
Contact  
Factory For  
1 = Pd/Ag Term  
G = 2ꢀ (10 pF)  
5ꢀ  
K = 10ꢀ  
Contact  
Factory  
For  
J
=
Multiples  
NOTE: Contact factory for availability of Termination and Tolerance Options for Specific Part Numbers.  
Contact factory for non-specified capacitance values.  
Temperature Coefficient  
Insulation Resistance vs Temperature  
Capacitance vs. Frequency  
10,000  
1,000  
100  
+2  
Typical Capacitance Change  
Envelope: 0 30 ppm/°C  
+1  
+0.5  
0
0
-1  
-2  
-0.5  
0
1KHz  
10 KHz  
100 KHz  
1 MHz  
10 MHz  
-55 -35  
+125  
-15 +5 +25 +45 +65 +85 +105  
40  
60  
80  
100  
0
20  
Frequency  
Temperature °C  
Temperature °C  
Variation of Impedance with Cap Value  
Impedance vs. Frequency  
0805 - C0G (NP0)  
Variation of Impedance with Ceramic Formulation  
Impedance vs. Frequency  
1000 pF - C0G (NP0) vs X7R  
0805  
Variation of Impedance with Chip Size  
Impedance vs. Frequency  
1000 pF - C0G (NP0)  
10 pF vs. 100 pF vs. 1000 pF  
100,000  
10  
10.00  
1206  
0805  
1812  
1210  
X7R  
NPO  
10,000  
1,000  
100  
1.00  
1.0  
0.1  
0.10  
0.01  
10 pF  
10.0  
1.0  
0.1  
100  
1000  
10  
100 pF  
1000 pF  
100  
1000  
10  
Frequency, MHz  
Frequency, MHz  
1
100  
Frequency, MHz  
1000  
10  
4
C0G (NP0) Dielectric  
Specifications and Test Methods  
Parameter/Test  
Operating Temperature Range  
Capacitance  
NP0 Specification Limits  
Measuring Conditions  
Temperature Cycle Chamber  
Freq.: 1.0 MHz 10ꢀ for cap 1000 pF  
1.0 kHz 10ꢀ for cap ꢃ 1000 pF  
Voltage: 1.0Vrms .2V  
Charge device with rated voltage for  
60 5 secs ꢄ room temp/humidity  
Charge device with 300ꢀ of rated voltage for  
1-5 seconds, w/charge and discharge current  
limited to 50 mA (max)  
-55ºC to +125ºC  
Within specified tolerance  
ꢂ30 pF: Q400+20 x Cap Value  
30 pF: Q1000  
100,000MΩ or 1000MΩ - µF,  
whichever is less  
Q
Insulation Resistance  
Dielectric Strength  
No breakdown or visual defects  
Note: Charge device with 150ꢀ of rated  
voltage for 500V devices.  
Appearance  
Capacitance  
Variation  
No defects  
Deflection: 2mm  
Test Time: 30 seconds  
5ꢀ or .5 pF, whichever is greater  
Resistance to  
Flexure  
1mm/sec  
Q
Meets Initial Values (As Above)  
Stresses  
Insulation  
Resistance  
Initial Value x 0.3  
90 mm  
95ꢀ of each terminal should be covered  
with fresh solder  
No defects, ꢂ25ꢀ leaching of either end terminal  
Dip device in eutectic solder at 230 5ºC  
for 5.0 0.5 seconds  
Solderability  
Appearance  
Capacitance  
Variation  
2.5ꢀ or .25 pF, whichever is greater  
Dip device in eutectic solder at 260ºC for 60  
seconds. Store at room temperature for 24  
hours before measuring electrical properties.  
2
Resistance to  
Solder Heat  
Q
Meets Initial Values (As Above)  
Meets Initial Values (As Above)  
Insulation  
Resistance  
Dielectric  
Meets Initial Values (As Above)  
No visual defects  
Strength  
Appearance  
Capacitance  
Variation  
Step 1: -55ºC 2º  
Step 2: Room Temp  
30 3 minutes  
2.5ꢀ or .25 pF, whichever is greater  
3 minutes  
Thermal  
Shock  
Q
Meets Initial Values (As Above)  
Meets Initial Values (As Above)  
Step 3: +125ºC 2º  
Step 4: Room Temp  
30 3 minutes  
Insulation  
Resistance  
Dielectric  
3 minutes  
Repeat for 5 cycles and measure after  
24 hours at room temperature  
Meets Initial Values (As Above)  
No visual defects  
Strength  
Appearance  
Capacitance  
Variation  
3.0ꢀ or .3 pF, whichever is greater  
Charge device with twice rated voltage in  
test chamber set at 125ºC 2ºC  
for 1000 hours (+48, -0).  
30 pF:  
10 pF, 30 pF:  
ꢂ10 pF:  
Q350  
Q275 +5C/2  
Q200 +10C  
Q
Load Life  
(C=Nominal Cap)  
Insulation  
Resistance  
Dielectric  
Remove from test chamber and stabilize at  
room temperature for 24 hours  
before measuring.  
Initial Value x 0.3 (See Above)  
Meets Initial Values (As Above)  
No visual defects  
Strength  
Appearance  
Capacitance  
Variation  
5.0ꢀ or .5 pF, whichever is greater  
Store in a test chamber set at 85ºC 2ºC/  
85ꢀ 5ꢀ relative humidity for 1000 hours  
(+48, -0) with rated voltage applied.  
30 pF:  
10 pF, 30 pF:  
ꢂ10 pF:  
Q350  
Q275 +5C/2  
Q200 +10C  
Load  
Q
Humidity  
Insulation  
Resistance  
Dielectric  
Strength  
Remove from chamber and stabilize at  
room temperature for 24 2 hours  
before measuring.  
Initial Value x 0.3 (See Above)  
Meets Initial Values (As Above)  
5
C0G (NP0) Dielectric  
Capacitance Range  
PREFERRED SIZES ARE SHADED  
SIZE  
0201  
0402  
0603  
0805  
1206  
Soldering  
Packaging  
Reflow Only  
All Paper  
Reflow/Wave  
All Paper  
Reflow/Wave  
All Paper  
Reflow/Wave  
Reflow/Wave  
Paper/Embossed  
Paper/Embossed  
mm  
(in.)  
0.60 0.03  
1.00 0.10  
1.60 0.15  
2.01 0.20  
3.20 0.20  
(L) Length  
(0.024 0.001)  
(0.040 0.004)  
(0.063 0.006)  
(0.079 0.008)  
(0.126 0.008)  
mm  
(in.)  
0.30 0.03  
(0.011 0.001)  
0.50 0.10  
(0.020 0.004)  
0.81 0.15  
(0.032 0.006)  
1.25 0.20  
(0.049 0.008)  
1.60 0.20  
(0.063 0.008)  
(W) Width  
mm  
(in.)  
0.15 0.05  
(0.006 0.002)  
0.25 0.15  
(0.010 0.006)  
0.35 0.15  
(0.014 0.006)  
0.50 0.25  
(0.020 0.010)  
0.50 0.25  
(0.020 0.010)  
(t) Terminal  
WVDC  
0.5  
1.0  
1.2  
1.5  
1.8  
2.2  
2.7  
3.3  
3.9  
4.7  
5.6  
6.8  
8.2  
10  
12  
15  
18  
22  
27  
33  
39  
47  
56  
68  
25  
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
50  
16  
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
25  
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
50  
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
16  
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
25  
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
50  
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
100  
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
16  
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
25  
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
50  
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
N
N
100  
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
200  
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
16  
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
M
M
M
25  
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
M
M
M
50  
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
M
M
M
M
M
M
M
100  
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
M
M
P
P
P
P
P
200  
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
500  
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
Cap  
(pF)  
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
82  
100  
120  
150  
180  
220  
270  
330  
390  
470  
560  
680  
820  
1000  
1200  
1500  
1800  
2200  
2700  
3300  
3900  
4700  
5600  
6800  
8200  
0.010  
0.012  
0.015  
0.018  
0.022  
0.027  
0.033  
0.039  
0.047  
0.068  
0.082  
0.1  
J
M
M
M
M
M
M
P
M
M
M
M
M
J
J
J
J
M
Q
Q
Q
W
L
Cap  
(µF)  
T
t
WVDC  
25  
50  
16  
25  
50  
16  
25  
50  
100  
16  
25  
50  
100  
200  
16  
25  
50  
100  
200  
500  
SIZE  
0201  
0402  
0603  
0805  
1206  
Letter  
Max.  
Thickness (0.013)  
A
0.33  
C
0.56  
(0.022)  
E
0.71  
(0.028)  
G
0.90  
(0.035)  
J
0.94  
(0.037)  
K
1.02  
(0.040)  
M
1.27  
(0.050)  
N
1.40  
(0.055)  
P
Q
1.78  
(0.070)  
X
2.29  
(0.090)  
Y
2.54  
(0.100)  
Z
2.79  
(0.110)  
1.52  
(0.060)  
PAPER  
EMBOSSED  
6
C0G (NP0) Dielectric  
Capacitance Range  
PREFERRED SIZES ARE SHADED  
SIZE  
1210  
1812  
1825  
2220  
2225  
Soldering  
Reflow Only  
Reflow Only  
Reflow Only  
Reflow Only  
Reflow Only  
Packaging  
Paper/Embossed  
All Embossed  
All Embossed  
All Embossed  
All Embossed  
mm  
(in.)  
3.20 0.20  
4.50 0.30  
4.50 0.30  
5.70 0.40  
5.72 0.25  
(L) Length  
(0.126 0.008)  
(0.177 0.012)  
(0.177 0.012)  
(0.225 0.016)  
(0.225 0.010)  
mm  
(in.)  
2.50 0.20  
(0.098 0.008)  
3.20 0.20  
(0.126 0.008)  
6.40 0.40  
(0.252 0.016)  
5.00 0.40  
(0.197 0.016)  
6.35 0.25  
(0.250 0.010)  
(W) Width  
mm  
(in.)  
0.50 0.25  
(0.020 0.010)  
0.61 0.36  
(0.024 0.014)  
0.61 0.36  
(0.024 0.014)  
0.64 0.39  
(0.025 0.015)  
0.64 0.39  
(0.025 0.015)  
(t) Terminal  
WVDC  
0.5  
1.0  
25  
50  
100  
200  
500  
25  
50  
100  
200  
500  
50  
100  
200  
50  
100  
200  
50  
100  
200  
Cap  
(pF)  
1.2  
1.5  
1.8  
2.2  
2.7  
3.3  
W
L
T
3.9  
4.7  
5.6  
6.8  
8.2  
t
10  
12  
J
J
15  
J
18  
J
22  
J
27  
J
33  
J
39  
J
47  
J
56  
J
68  
J
82  
J
100  
120  
150  
180  
220  
270  
330  
390  
470  
560  
680  
820  
1000  
1200  
1500  
1800  
2200  
2700  
3300  
3900  
4700  
5600  
6800  
8200  
0.010  
0.012  
0.015  
0.018  
0.022  
0.027  
0.033  
0.039  
0.047  
J
J
J
J
J
J
J
M
M
M
M
M
M
M
M
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
M
M
M
M
K
K
K
K
K
P
P
P
P
P
X
M
M
M
M
P
Q
Q
Q
Q
X
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
P
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
P
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
Y
P
P
P
P
P
P
P
P
P
P
P
P
P
P
Y
Y
Y
Y
M
M
M
Q
Q
J
M
M
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
Y
Y
X
X
X
X
X
X
X
X
X
X
X
K
K
M
M
M
M
M
M
M
M
M
M
Cap  
(µF)  
K
M
M
M
M
M
M
M
P
P
P
P
Y
P
P
P
P
0.068  
0.082  
0.1  
M
M
M
M
P
Q
Q
WVDC  
25  
50  
100  
200  
500  
25  
50  
100  
200  
500  
50  
100  
200  
50  
100  
200  
50  
100  
200  
SIZE  
1210  
1812  
1825  
2220  
2225  
Letter  
Max.  
Thickness (0.013)  
A
0.33  
C
0.56  
(0.022)  
E
0.71  
(0.028)  
G
0.90  
(0.035)  
J
0.94  
(0.037)  
K
1.02  
(0.040)  
M
1.27  
(0.050)  
N
1.40  
(0.055)  
P
1.52  
(0.060)  
Q
1.78  
(0.070)  
X
2.29  
(0.090)  
Y
2.54  
(0.100)  
Z
2.79  
(0.110)  
PAPER  
EMBOSSED  
7
RF/Microwave C0G (NP0)  
Capacitors (RoHS)  
Ultra Low ESR, “U” Series, C0G (NP0) Chip Capacitors  
GENERAL INFORMATION  
“U” Series capacitors are C0G (NP0) chip capacitors spe-  
cially designed for “Ultra” low ESR for applications in the  
communications market. Max ESR and effective capacitance  
are met on each value producing lot to lot uniformity.  
Sizes available are EIA chip sizes 0603, 0805, and 1210.  
DIMENSIONS: inches (millimeters)  
0402  
0603  
0805  
1210  
A
A
E
A
A
E
C
B
B
C
B
B
C
C
D
D
D
D
D
D
E
inches (mm)  
Size  
0402  
0603  
0805  
1210  
A
B
C
D
N/A  
E
N/A  
0.039 0.004 (1.00 0.1)  
0.060 0.010 (1.52 0.25) 0.030 0.010 (0.76 0.25)  
0.079 0.008 (2.01 0.2)  
0.126 0.008 (3.2 0.2)  
0.020 0.004 (0.50 0.1)  
0.024 (0.6) max  
0.036 (0.91) max  
0.010 0.005 (0.25 0.13)  
0.030 (0.76) min  
0.020 (0.51) min  
0.049 0.008 (1.25 0.2)  
0.098 0.008 (2.49 0.2)  
0.040 0.005 (1.02 0.127) 0.020 0.010 (0.51 0.255)  
0.050 0.005 (1.27 0.127) 0.025 0.015 (0.635 0.381) 0.040 (1.02) min  
HOW TO ORDER  
0805  
1
U
100  
J
A
T
2
A
Case Size  
0402  
Dielectric =  
Ultra Low  
ESR  
Capacitance  
Tolerance  
Code  
Termination  
T= Plated Ni  
and Sn  
Special  
Code  
A = Standard  
0603  
0805  
1210  
B = 0.1pF  
C = 0.25pF  
D = 0.5pF  
F = 1ꢀ  
G = 2ꢀ  
J = 5ꢀ  
K = 10ꢀ  
M = 20ꢀ  
Voltage  
Code  
3 = 25V  
5 = 50V  
1 = 100V  
2 = 200V  
Failure Rate  
Code  
A = Not Appli-  
cable  
Packaging  
Code  
2 = 7" Reel  
4 = 13" Reel  
9 = Bulk  
Capacitance  
EIA Capacitance Code in pF.  
First two digits = significant figures  
or “R” for decimal place.  
Third digit = number of zeros or after  
“R” significant figures.  
NOTE: Contact factory for availability of Termination and Toler-  
ance Options for Specific Part Numbers.  
ELECTRICAL CHARACTERISTICS  
Dielectric Working Voltage (DWV):  
Capacitance Values and Tolerances:  
Size 0402 - 0.2 pF to 22 pF ꢄ 1 MHz  
Size 0603 - 1.0 pF to 100 pF ꢄ 1 MHz  
Size 0805 - 1.6 pF to 160 pF ꢄ 1 MHz  
Size 1210 - 2.4 pF to 1000 pF ꢄ 1 MHz  
250ꢀ of rated WVDC  
Equivalent Series Resistance Typical (ESR):  
0402 - See Performance Curve, page 9  
0603 - See Performance Curve, page 9  
0805 - See Performance Curve, page 9  
1210 - See Performance Curve, page 9  
Temperature Coefficient of Capacitance (TC):  
0 30 ppm/ꢁC (-55ꢁ to +125ꢁC)  
Marking: Laser marking EIA J marking standard  
(except 0603) (capacitance code and  
tolerance upon request).  
Insulation Resistance (IR):  
1012 Ω min. ꢄ 25ꢁC and rated WVDC  
1011 Ω min. ꢄ 125ꢁC and rated WVDC  
Working Voltage (WVDC):  
MILITARY SPECIFICATIONS  
Size  
Working Voltage  
Meets or exceeds the requirements of MIL-C-55681  
0402 - 50, 25 WVDC  
RoHS COMPLIANT  
0603 - 200, 100, 50 WVDC  
0805 - 200, 100 WVDC  
1210 - 200, 100 WVDC  
Pb: Free  
8
RF/Microwave C0G (NP0)  
Capacitors (RoHS)  
Ultra Low ESR, “U” Series, C0G (NP0) Chip Capacitors  
CAPACITANCE RANGE  
Available  
Size  
Cap (pF) Tolerance 0402 0603 0805 1210  
Size  
Cap (pF) Tolerance 0402 0603 0805 1210  
Size  
Cap (pF) Tolerance 0402 0603 0805 1210  
Size  
Cap (pF) Tolerance 0402 0603 0805 1210  
Available  
Available  
Available  
7.5  
8.2  
9.1  
10  
11  
12  
13  
15  
18  
20  
22  
24  
27  
30  
33  
36  
39  
43  
47  
51  
56  
68  
75  
82  
91  
B,C,J,K,M 50V 200V 200V 200V  
100  
110  
F,G,J,K,M N/A 100V 200V 200V  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
B,C  
50V N/A N/A N/A  
1.0  
1.1  
1.2  
1.3  
1.4  
1.5  
1.6  
1.7  
1.8  
1.9  
2.0  
2.1  
2.2  
2.4  
2.7  
3.0  
3.3  
3.6  
3.9  
4.3  
4.7  
5.1  
5.6  
6.2  
6.8  
B,C,D  
50V 200V 200V 200V  
50V  
B,C,J,K,M  
F,G,J,K,M  
120  
50V  
130  
N/A 200V  
B,C  
B,C,D  
140  
100V  
150  
160  
100V  
N/A  
180  
B,C,D  
200V  
100V  
200  
220  
270  
300  
330  
50V  
N/A  
360  
390  
430  
200V  
100V  
470  
510  
560  
620  
680  
750  
820  
910  
B,C,D  
B,C,J,K,M  
1000 F,G,J,K,M  
ULTRA LOW ESR, “U” SERIES  
TYPICAL ESR vs. FREQUENCY  
0402 “U” SERIES  
TYPICAL ESR vs. FREQUENCY  
0603 “U” SERIES  
1
1
10 pF  
15 pF  
3.3 pF  
3.9 pF  
4.7 pF  
5.1 pF  
6.8 pF  
10.0 pF  
15.0 pF  
0.1  
0.1  
0.01  
0.01  
2500  
2500  
0
0
500  
1000  
Frequency (MHz)  
2000  
500  
1000  
Frequency (MHz)  
2000  
1500  
1500  
TYPICAL ESR vs. FREQUENCY  
1210 “U” SERIES  
TYPICAL ESR vs. FREQUENCY  
0805 “U” SERIES  
1
1
100 pF  
10.0 pF  
10 pF  
100 pF  
0.1  
0.1  
300 pF  
0.01  
0.01  
2500  
0
0
500  
1000  
2000  
500  
1000  
Frequency (MHz)  
2000  
1500  
1500  
Frequency (MHz)  
ESR Measured on the Boonton 34A  
RoHS COMPLIANT  
Pb: Free  
9
RF/Microwave C0G (NP0) Capacitors  
Ultra Low ESR, “U” Series, C0G (NP0) Chip Capacitors  
F r e q u e n c y ( G H z )  
10  
RF/Microwave C0G (NP0)  
Capacitors (Sn/Pb)  
Ultra Low ESR, “U” Series, C0G (NP0) Chip Capacitors  
GENERAL INFORMATION  
“U” Series capacitors are C0G (NP0) chip capacitors specially  
designed for “Ultra” low ESR for applications in the commu-  
nications market. Max ESR and effective capacitance  
are met on each value producing lot to lot uniformity.  
Sizes available are EIA chip sizes 0603, 0805, and 1210.  
DIMENSIONS: inches (millimeters)  
0402  
0603  
0805  
1210  
A
A
E
A
A
E
C
B
B
C
B
B
C
C
D
D
D
D
D
D
E
inches (mm)  
Size  
0402  
0603  
0805  
1210  
A
B
C
D
N/A  
E
N/A  
0.039 0.004 (1.00 0.1)  
0.060 0.010 (1.52 0.25) 0.030 0.010 (0.76 0.25)  
0.079 0.008 (2.01 0.2)  
0.126 0.008 (3.2 0.2)  
0.020 0.004 (0.50 0.1)  
0.024 (0.6) max  
0.036 (0.91) max  
0.010 0.005 (0.25 0.13)  
0.030 (0.76) min  
0.020 (0.51) min  
0.049 0.008 (1.25 0.2)  
0.098 0.008 (2.49 0.2)  
0.040 0.005 (1.02 0.127) 0.020 0.010 (0.51 0.254)  
0.050 0.005 (1.27 0.127) 0.025 0.015 (0.635 0.381) 0.040 (1.02) min  
HOW TO ORDER  
LD05  
1
U
100  
J
A
B
2
A
Case Size  
LD02 = 0402  
LD03 = 0603  
LD05 = 0805  
LD10 = 1210  
Dielectric =  
Capacitance  
Tolerance  
Code  
B = 0.1pF  
C = 0.25pF  
D = 0.5pF  
F = 1ꢀ  
Termination  
B = 5ꢀ min lead  
Special Code  
A = Standard  
Ultra Low ESR  
G = 2ꢀ  
J = 5ꢀ  
K = 10ꢀ  
M = 20ꢀ  
Voltage Code  
3 = 25V  
5 = 50V  
1 = 100V  
2 = 200V  
Failure Rate  
Code  
A = Not Applica-  
ble  
Packaging  
Code  
2 = 7" Reel  
4 = 13" Reel  
9 = Bulk  
Capacitance  
EIA Capacitance Code in pF.  
First two digits = significant figures  
or “R” for decimal place.  
Third digit = number of zeros or after  
“R” significant figures.  
ELECTRICAL CHARACTERISTICS  
Capacitance Values and Tolerances:  
Size 0402 - 0.2 pF to 22 pF ꢄ 1 MHz  
Size 0603 - 1.0 pF to 100 pF ꢄ 1 MHz  
Size 0805 - 1.6 pF to 160 pF ꢄ 1 MHz  
Size 1210 - 2.4 pF to 1000 pF ꢄ 1 MHz  
Dielectric Working Voltage (DWV):  
250ꢀ of rated WVDC  
Equivalent Series Resistance Typical (ESR):  
Temperature Coefficient of Capacitance (TC):  
0402  
0603  
0805  
1210  
-
-
-
-
See Performance Curve, page 12  
See Performance Curve, page 12  
See Performance Curve, page 12  
See Performance Curve, page 12  
0 30 ppm/ꢁC (-55ꢁ to +125ꢁC)  
Insulation Resistance (IR):  
1012 Ω min. ꢄ 25ꢁC and rated WVDC  
1011 Ω min. ꢄ 125ꢁC and rated WVDC  
Marking: Laser marking EIA J marking standard  
(except 0603) (capacitance code and  
tolerance upon request).  
Working Voltage (WVDC):  
Size  
Working Voltage  
50, 25 WVDC  
200, 100, 50 WVDC  
200, 100 WVDC  
200, 100 WVDC  
0402  
0603  
0805  
1210  
-
-
-
-
MILITARY SPECIFICATIONS  
Meets or exceeds the requirements of MIL-C-55681  
11  
RF/Microwave C0G (NP0)  
Capacitors (Sn/Pb)  
Ultra Low ESR, “U” Series, C0G (NP0) Chip Capacitors  
CAPACITANCE RANGE  
Size  
Cap (pF) Tolerance LD02 LD03 LD05 LD10  
Size  
Cap (pF) Tolerance LD02 LD03 LD05 LD10  
Size  
Size  
Cap (pF) Tolerance LD02 LD03 LD05 LD10  
Available  
Available  
Available  
Available  
Cap (pF) Tolerance LD02 LD03 LD05 LD10  
7.5  
8.2  
9.1  
10  
11  
12  
13  
15  
18  
20  
22  
24  
27  
30  
33  
36  
39  
43  
47  
51  
56  
68  
75  
82  
91  
B,C,J,K,M 50V 200V 200V 200V  
100  
110  
120  
130  
140  
150  
160  
180  
200  
220  
270  
300  
330  
360  
390  
430  
470  
510  
560  
620  
680  
750  
820  
910  
F,G,J,K,M N/A 100V 200V 200V  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
B,C  
50V N/A N/A N/A  
1.0  
1.1  
1.2  
1.3  
1.4  
1.5  
1.6  
1.7  
1.8  
1.9  
2.0  
2.1  
2.2  
2.4  
2.7  
3.0  
3.3  
3.6  
3.9  
4.3  
4.7  
5.1  
5.6  
6.2  
6.8  
B,C,D  
50V 200V 200V 200V  
50V  
B,C,J,K,M  
F,G,J,K,M  
50V  
N/A 200V  
B,C  
B,C,D  
100V  
100V  
N/A  
B,C,D  
200V  
100V  
50V  
N/A  
200V  
100V  
B,C,D  
B,C,J,K,M  
᭡  
1000 F,G,J,K,M  
ULTRA LOW ESR, “U” SERIES  
TYPICAL ESR vs. FREQUENCY  
0402 “U” SERIES  
TYPICAL ESR vs. FREQUENCY  
0603 “U” SERIES  
1
1
10 pF  
15 pF  
3.3 pF  
3.9 pF  
4.7 pF  
5.1 pF  
6.8 pF  
10.0 pF  
15.0 pF  
0.1  
0.1  
0.01  
0.01  
2500  
2500  
0
0
500  
1000  
Frequency (MHz)  
2000  
500  
1000  
Frequency (MHz)  
2000  
1500  
1500  
TYPICAL ESR vs. FREQUENCY  
1210 “U” SERIES  
TYPICAL ESR vs. FREQUENCY  
0805 “U” SERIES  
1
1
100 pF  
10.0 pF  
10 pF  
100 pF  
0.1  
0.1  
300 pF  
0.01  
0.01  
2500  
0
0
500  
1000  
2000  
500  
1000  
Frequency (MHz)  
2000  
1500  
1500  
Frequency (MHz)  
ESR Measured on the Boonton 34A  
12  
Designer Kits  
Communication Kits “U” Series  
“U” SERIES KITS  
0402  
Kit 5000 UZ  
Cap.  
0603  
Kit 4000 UZ  
Cap.  
Cap.  
Cap.  
Value Tolerance Value Tolerance  
Value Tolerance Value Tolerance  
pF  
pF  
pF  
pF  
1.0  
1.2  
1.5  
1.8  
2.0  
2.4  
2.7  
3.0  
3.3  
3.9  
4.7  
5.6  
6.8  
7.5  
8.2  
0.5  
1.0  
1.5  
1.8  
2.2  
2.4  
3.0  
3.6  
4.7  
5.6  
6.8  
B ( 0.1pF)  
B ( 0.1pF)  
J ( 5ꢀ)  
10.0  
12.0  
15.0  
18.0  
22.0  
27.0  
33.0  
39.0  
47.0  
8.2  
B ( 0.1pF)  
10.0  
12.0  
15.0  
B ( 0.1pF)  
J ( 5ꢀ)  
***25 each of 15 values  
***25 each of 24 values  
0805  
Kit 3000 UZ  
1210  
Kit 3500 UZ  
Cap.  
Cap.  
Cap.  
Cap.  
Value Tolerance Value Tolerance  
Value Tolerance Value Tolerance  
pF  
pF  
pF  
pF  
1.0  
1.5  
2.2  
2.4  
2.7  
3.0  
3.3  
3.9  
4.7  
5.6  
7.5  
8.2  
9.1  
10.0  
12.0  
15.0  
18.0  
22.0  
24.0  
27.0  
33.0  
2.2  
2.7  
4.7  
5.1  
6.8  
8.2  
9.1  
10.0  
13.0  
15.0  
18.0  
20.0  
24.0  
27.0  
30.0  
36.0  
39.0  
47.0  
B ( 0.1pF) 51.0  
56.0  
68.0  
82.0  
100.0  
120.0  
B ( 0.1pF) 36.0  
39.0  
47.0  
56.0  
68.0  
82.0  
J ( 5ꢀ)  
J ( 5ꢀ)  
130.0  
240.0  
J ( 5ꢀ)  
300.0  
100.0  
130.0  
390.0  
470.0  
680.0  
J ( 5ꢀ)  
160.0  
***25 each of 30 values  
***25 each of 30 values  
13  
X8R Dielectric  
General Specifications  
AVX have developed a range of multilayer ceramic capacitors designed for use in applications up to  
150ºC. These capacitors are manufactured with an X8R dielectric material which has a capacitance  
variation of 15ꢀ between -55ºC and +150ºC.  
The need for X8R performance has been driven by customer requirements for parts that operate at  
elevated temperatures. They provide a highly reliable capacitor with low loss and stable capacitance  
over temperature.  
They are ideal for automotive under the hood sensors, measure while drilling and log while drilling.  
Typical applications include wire line logging tools such as gamma ray receivers, acoustic  
transceivers and micro-resistivity tools. They can also be used as bulk capacitors for high  
temperature camera modules.  
X8R capacitors are available as standard and Automotive AEC-Q200 qualified parts. Optional  
termination systems, tin, FLEXITERM® and conductive epoxy for hybrid applications are available.  
Providing this series with our FLEXITERM® termination system provides further advantage to  
customers by way of enhanced resistance to both, temperature cycling and mechanical damage.  
PART NUMBER (see page 2 for complete part number explanation)  
0805  
5
F
104  
K
4
T
2
A
Size  
0603  
0805  
1206  
Voltage  
25V = 3  
50V = 5  
Dielectric  
X8R = F  
Capacitance Capacitance  
Failure  
Rate  
Terminations  
T = Plated Ni  
and Sn  
Packaging  
2 = 7" Reel  
4 = 13" Reel  
Special  
Code  
A = Std.  
Product  
Code (In pF)  
2 Sig. Digits +  
Number of  
Tolerance  
J = 5ꢀ  
4 = Automotive  
A = Not  
K = 10ꢀ  
M = 20ꢀ  
Z = FLEXITERM®  
U = Conductive  
Epoxy for  
Applicable  
Zeros  
e.g. 10µF = 106  
Hybrid apps  
NOTE: Contact factory for availability of Termination and Tolerance Options for Specific Part Numbers.  
SIZE  
0603  
0805  
1206  
WVDC  
270  
330  
470  
680  
25V  
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
50V  
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
25V  
50V  
25V  
50V  
271  
331  
471  
681  
102  
152  
182  
222  
272  
332  
392  
472  
562  
682  
822  
103  
123  
153  
183  
223  
273  
333  
393  
473  
563  
683  
823  
104  
124  
154  
184  
224  
274  
334  
394  
474  
684  
824  
105  
Cap  
(pF)  
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
N
N
N
N
N
N
N
N
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
N
N
N
N
N
N
1000  
1500  
1800  
2200  
2700  
3300  
3900  
4700  
5600  
6800  
8200  
0.01  
0.012  
0.015  
0.018  
0.022  
0.027  
0.033  
0.039  
0.047  
0.056  
0.068  
0.082  
0.1  
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
Cap  
(µF)  
J
J
J
J
J
J
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
0.12  
0.15  
0.18  
0.22  
0.27  
0.33  
0.39  
0.47  
0.68  
0.82  
1
WVDC  
25V  
50V  
25V  
50V  
25V  
50V  
SIZE  
0603  
0805  
1206  
Letter  
Max.  
Thickness (0.013)  
A
0.33  
C
E
0.71  
(0.028)  
G
0.90  
(0.035)  
J
0.94  
(0.037)  
K
1.02  
(0.040)  
M
1.27  
(0.050)  
N
1.40  
(0.055)  
P
1.52  
(0.060)  
Q
1.78  
(0.070)  
X
2.29  
(0.090)  
Y
2.54  
(0.100)  
Z
2.79  
(0.110)  
0.56  
(0.022)  
PAPER  
EMBOSSED  
= AEC-Q200 Qualified  
14  
X8R Dielectric  
General Specifications  
APPLICATIONS FOR X8R CAPACITORS  
• All market sectors with a 150ꢁC requirement  
• Automotive on engine applications  
• Oil exploration applications  
• Hybrid automotive applications  
– Battery control  
– Inverter / converter circuits  
– Motor control applications  
– Water pump  
• Hybrid commercial applications  
– Emergency circuits  
– Sensors  
Temperature regulation  
ADVANTAGES OF X8R MLC CAPACITORS  
• Capacitance variation of 15ꢀ between –55ꢁC and  
+150ꢁC  
• Qualified to the highest automotive AEC-Q200 standards  
• Excellent reliability compared to other capacitor  
technologies  
• RoHS compliant  
• Low ESR / ESL compared to other technologies  
• Tin solder finish  
• FLEXITERM® available  
• Hybrid available  
• 50V range available  
ENGINEERING TOOLS FOR HIGH VOLTAGE MLC CAPACITORS  
• Samples  
Technical Articles  
• Application Engineering  
• Application Support  
X8R Dielectric  
0805, 50V, X8R Typical Temperature Coefficient  
5.00  
0.00  
-5.00  
-10.00  
-15.00  
X7R included  
for comparison  
-20.00  
-25.00  
-60  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
140  
160  
Temperature (°C)  
15  
X7R Dielectric  
General Specifications  
X7R formulations are called “temperature stable” ceramics  
and fall into EIA Class II materials. X7R is the most popular of  
these intermediate dielectric constant materials. Its tempera-  
ture variation of capacitance is within  
15ꢀ from  
-55ꢁC to +125ꢁC. This capacitance change is non-linear.  
Capacitance for X7R varies under the influence of electrical  
operating conditions such as voltage and frequency.  
X7R dielectric chip usage covers the broad spectrum of  
industrial applications where known changes in capacitance  
due to applied voltages are acceptable.  
PART NUMBER (see page 2 for complete part number explanation)  
0805  
5
C
103  
M
A
T
2
A
Size  
(L" x W")  
Voltage  
4V = 4  
Dielectric  
X7R = C  
Capacitance  
Code (In pF)  
2 Sig. Digits +  
Number of Zeros  
Capacitance  
Tolerance  
J = 5ꢀ*  
Failure  
Rate  
A = Not  
Applicable  
Terminations  
Packaging  
2 = 7" Reel  
Special  
Code  
A = Std. Product  
T = Plated Ni  
6.3V = 6  
10V = Z  
16V = Y  
25V = 3  
50V = 5  
100V = 1  
200V = 2  
500V = 7  
4 = 13" Reel  
7 = Bulk Cass.  
9 = Bulk  
and Sn  
K = 10ꢀ  
7 = Gold Plated*  
M = 20ꢀ  
Z= FLEXITERM®**  
*1µF only  
Contact  
Factory For  
Multiples  
*Optional termination  
**See FLEXITERM®  
X7R section  
NOTE: Contact factory for availability of Termination and Tolerance Options for Specific Part Numbers.  
Contact factory for non-specified capacitance values.  
X7R Dielectric  
Insulation Resistance vs Temperature  
Capacitance vs. Frequency  
Typical Temperature Coefficient  
10,000  
1,000  
100  
+30  
10  
+20  
+10  
5
0
-5  
0
-10  
-20  
-30  
-10  
-15  
-20  
-25  
0
0
20  
40  
60  
80  
100  
120  
-60 -40  
100 140  
120  
1KHz  
10 KHz  
100 KHz  
1 MHz  
10 MHz  
-20  
0
20 40 60 80  
Frequency  
Temperature °C  
Temperature °C  
Variation of Impedance with Cap Value  
Impedance vs. Frequency  
1,000 pF vs. 10,000 pF - X7R  
0805  
Variation of Impedance with Chip Size  
Impedance vs. Frequency  
100,000 pF - X7R  
Variation of Impedance with Chip Size  
Impedance vs. Frequency  
10,000 pF - X7R  
10  
10.00  
10  
1206  
0805  
1210  
1206  
0805  
1210  
1,000 pF  
10,000 pF  
1.0  
0.1  
.01  
1.00  
1.0  
0.10  
0.01  
0.1  
.01  
100  
1,000  
1
10  
100  
1000  
10  
100  
1,000  
1
10  
Frequency, MHz  
Frequency, MHz  
Frequency, MHz  
16  
X7R Dielectric  
Specifications and Test Methods  
Parameter/Test  
Operating Temperature Range  
Capacitance  
X7R Specification Limits  
Measuring Conditions  
Temperature Cycle Chamber  
-55ºC to +125ºC  
Within specified tolerance  
2.5ꢀ for 50V DC rating  
3.0ꢀ for 25V DC rating  
3.5ꢀ for 16V DC rating  
5.0ꢀ for 10V DC rating  
100,000MΩ or 1000MΩ - µF,  
whichever is less  
Freq.: 1.0 kHz 10ꢀ  
Voltage: 1.0Vrms .2V  
For Cap ꢃ 10 µF, 0.5Vrms ꢄ 120Hz  
Dissipation Factor  
Charge device with rated voltage for  
120 5 secs ꢄ room temp/humidity  
Charge device with 300ꢀ of rated voltage for  
1-5 seconds, w/charge and discharge current  
limited to 50 mA (max)  
Insulation Resistance  
Dielectric Strength  
No breakdown or visual defects  
Note: Charge device with 150ꢀ of rated  
voltage for 500V devices.  
Appearance  
Capacitance  
Variation  
Dissipation  
Factor  
No defects  
Deflection: 2mm  
Test Time: 30 seconds  
12ꢀ  
Resistance to  
Flexure  
1mm/sec  
Meets Initial Values (As Above)  
Stresses  
Insulation  
Resistance  
Initial Value x 0.3  
90 mm  
95ꢀ of each terminal should be covered  
with fresh solder  
No defects, ꢂ25ꢀ leaching of either end terminal  
Dip device in eutectic solder at 230 5ºC  
for 5.0 0.5 seconds  
Solderability  
Appearance  
Capacitance  
Variation  
7.5ꢀ  
Dip device in eutectic solder at 260ºC for 60  
seconds. Store at room temperature for 24  
hours before measuring electrical properties.  
Dissipation  
Factor  
Insulation  
Resistance  
Dielectric  
Strength  
2
Resistance to  
Solder Heat  
Meets Initial Values (As Above)  
Meets Initial Values (As Above)  
Meets Initial Values (As Above)  
No visual defects  
7.5ꢀ  
Appearance  
Capacitance  
Variation  
Step 1: -55ºC 2º  
Step 2: Room Temp  
30 3 minutes  
3 minutes  
Dissipation  
Factor  
Insulation  
Resistance  
Dielectric  
Strength  
Appearance  
Capacitance  
Variation  
Dissipation  
Factor  
Insulation  
Resistance  
Dielectric  
Strength  
Appearance  
Capacitance  
Variation  
Dissipation  
Factor  
Insulation  
Resistance  
Dielectric  
Strength  
Thermal  
Shock  
Meets Initial Values (As Above)  
Meets Initial Values (As Above)  
Step 3: +125ºC 2º  
Step 4: Room Temp  
30 3 minutes  
3 minutes  
Repeat for 5 cycles and measure after  
24 2 hours at room temperature  
Meets Initial Values (As Above)  
No visual defects  
Charge device with 1.5 rated voltage (10V) in  
test chamber set at 125ºC 2ºC  
for 1000 hours (+48, -0)  
12.5ꢀ  
Initial Value x 2.0 (See Above)  
Initial Value x 0.3 (See Above)  
Load Life  
Remove from test chamber and stabilize  
at room temperature for 24 2 hours  
before measuring.  
Meets Initial Values (As Above)  
No visual defects  
Store in a test chamber set at 85ºC 2ºC/  
85ꢀ 5ꢀ relative humidity for 1000 hours  
(+48, -0) with rated voltage applied.  
12.5ꢀ  
Load  
Humidity  
Initial Value x 2.0 (See Above)  
Initial Value x 0.3 (See Above)  
Meets Initial Values (As Above)  
Remove from chamber and stabilize at  
room temperature and humidity for  
24 2 hours before measuring.  
17  
X7R Dielectric  
Capacitance Range  
PREFERRED SIZES ARE SHADED  
SIZE  
0201  
0402  
0603  
0805  
1206  
Soldering  
Packaging  
Reflow Only  
All Paper  
Reflow/Wave  
All Paper  
Reflow/Wave  
All Paper  
Reflow/Wave  
Reflow/Wave  
Paper/Embossed  
Paper/Embossed  
mm  
(in.)  
0.60 0.03  
1.00 0.10  
1.60 0.15  
2.01 0.20  
3.20 0.20  
(L) Length  
(0.024 0.001)  
(0.040 0.004)  
(0.063 0.006)  
(0.079 0.008)  
(0.126 0.008)  
mm  
(in.)  
0.30 0.03  
(0.011 0.001)  
0.50 0.10  
(0.020 0.004)  
0.81 0.15  
(0.032 0.006)  
1.25 0.20  
(0.049 0.008)  
1.60 0.20  
(0.063 0.008)  
(W) Width  
mm  
(in.)  
0.15 0.05  
(0.006 0.002)  
0.25 0.15  
(0.010 0.006)  
0.35 0.15  
(0.014 0.006)  
0.50 0.25  
(0.020 0.010)  
0.50 0.25  
(0.020 0.010)  
(t) Terminal  
WVDC  
100  
150  
220  
330  
10  
16  
A
A
A
A
A
A
A
25  
16  
25  
50  
6.3  
10  
16  
25  
50  
100 200 6.3  
10  
16  
25  
50  
100 200 6.3  
10  
16  
25  
50  
100 200 500  
Cap  
(pF)  
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
C
C
C
C
C
C
C
C
C
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
N
N
N
N
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
N
N
N
N
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
N
N
N
N
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
N
K
K
K
K
470  
680  
1000  
1500  
2200  
3300  
4700  
6800  
0.010  
0.015  
0.022  
0.033  
0.047  
0.068  
0.10  
0.15  
0.22  
0.33  
0.47  
0.68  
1.0  
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
P
P
Q
Q
J
J
J
J
J
J
J
J
J
J
M
M
M
M
P
C
C
C
C
C
C
C
C
Cap  
(µF  
J
J
J
J
J
P
G
G
G
G
G
G
J
J
J
J
M
M
M
M
P
P
N
N
N
N
N
N
N
N
G
G
G
J
C
G
G
G
M
Q
Q
Q
Q
Q
Q
G
G
J*  
J*  
N
N
N
N
N
J
M
M
Q
Q
Q
Q
M
M
M
P
Q
M
M
M
Q
Q
J*  
J*  
1.5  
2.2  
J*  
P*  
3.3  
4.7  
10  
P*  
P*  
Q*  
Q*  
Q*  
Q*  
Q*  
P*  
22  
Q*  
47  
100  
WVDC  
10  
16  
25  
16  
25 50  
6.3  
10  
16  
25  
50  
100 200 6.3  
10  
16  
25  
50  
100 200 6.3  
10  
16  
25  
50  
100 200 500  
SIZE  
0201  
0402  
0603  
0805  
1206  
Letter  
Max.  
Thickness (0.013)  
A
0.33  
C
0.56  
(0.022)  
E
0.71  
(0.028)  
G
0.90  
(0.035)  
J
0.94  
(0.037)  
K
1.02  
(0.040)  
M
1.27  
(0.050)  
N
1.40  
(0.055)  
P
Q
1.78  
(0.070)  
X
2.29  
(0.090)  
Y
Z
1.52  
(0.060)  
2.54  
(0.100)  
2.79  
(0.110)  
PAPER  
EMBOSSED  
*Optional Specifications – Contact factory  
18  
X7R Dielectric  
Capacitance Range  
PREFERRED SIZES ARE SHADED  
SIZE  
1210  
1812  
1825  
2220  
2225  
Soldering  
Reflow Only  
Reflow Only  
Reflow Only  
Reflow Only  
Reflow Only  
Packaging  
Paper/Embossed  
All Embossed  
All Embossed  
All Embossed  
All Embossed  
mm  
(in.)  
3.20 0.20  
4.50 0.30  
4.50 0.30  
5.70 0.40  
5.72 0.25  
(L) Length  
(0.126 0.008)  
(0.177 0.012)  
(0.177 0.012)  
(0.225 0.016)  
(0.225 0.010)  
mm  
(in.)  
2.50 0.20  
(0.098 0.008)  
3.20 0.20  
(0.126 0.008)  
6.40 0.40  
(0.252 0.016)  
5.00 0.40  
(0.197 0.016)  
6.35 0.25  
(0.250 0.010)  
(W) Width  
mm  
(in.)  
0.50 0.25  
(0.020 0.010)  
0.61 0.36  
(0.024 0.014)  
0.61 0.36  
(0.024 0.014)  
0.64 0.39  
(0.025 0.015)  
0.64 0.39  
(0.025 0.015)  
(t) Terminal  
WVDC  
10  
16  
25  
50  
100  
200  
500  
50  
100  
200  
500  
50  
100  
25  
50  
100  
200  
50  
100  
Cap  
(pF)  
100  
150  
220  
W
L
330  
470  
T
680  
1000  
1500  
2200  
3300  
4700  
6800  
0.010  
0.015  
0.022  
0.033  
0.047  
0.068  
0.10  
0.15  
0.22  
0.33  
0.47  
0.68  
1.0  
t
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
M
M
N
N
X
X
X
Z
Z*  
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
M
M
N
N
X
X
X
Z
Z*  
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
M
P
P
Z
Z
Z
Z
Z*  
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
M
X
X
Z
Z
Z
Z
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
M
M
M
M
M
M
P
Cap  
(µF  
K
K
K
K
K
K
K
K
K
K
K
M
M
Z
K
K
K
K
K
K
K
K
K
M
P
Q
X
K
K
K
K
K
K
K
P
P
X
K
P
P
X
Z
Z
Z
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
P
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
Z
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
Z
Z
X
X
X
X
X
X
X
X
X
X
X
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
P
P
P
P
P
P
P
P
P
P
P
P
P
X
Q
Q
J
J
J
J
M
M
Z
Z
M
P
Q
Q
X
Z
Z
Z
P
1.5  
2.2  
3.3  
4.7  
10  
22  
Z
Z
Z
Z
Z
Z
47  
100  
WVDC  
10  
16  
25  
50  
100  
200  
500  
50  
100  
200  
500  
50  
100  
25  
50  
100  
200  
50  
100  
SIZE  
1210  
1812  
1825  
2220  
2225  
Letter  
Max.  
Thickness (0.013)  
A
0.33  
C
0.56  
(0.022)  
E
0.71  
(0.028)  
G
0.90  
(0.035)  
J
0.94  
(0.037)  
K
1.02  
(0.040)  
M
1.27  
(0.050)  
N
1.40  
(0.055)  
P
1.52  
(0.060)  
Q
1.78  
(0.070)  
X
2.29  
(0.090)  
Y
Z
2.79  
(0.110)  
2.54  
(0.100)  
PAPER  
EMBOSSED  
*Optional Specifications – Contact factory  
19  
X7S Dielectric  
General Specifications  
GENERAL DESCRIPTION  
X7S formulations are called “temperature stable” ceramics and fall  
into EIA Class II materials. Its temperature variation of capacitance  
is within 22ꢀ from –55ꢁC to +125ꢁC. This capacitance change is  
non-linear.  
Capacitance for X7S varies under the influence of electrical operating  
conditions such as voltage and frequency.  
X7S dielectric chip usage covers the broad spectrum of industrial  
applications where known changes in capacitance due to applied  
voltages are acceptable.  
PART NUMBER (see page 2 for complete part number explanation)  
1206  
Z
Z
105  
M
A
T
2
A
Size  
(L" x W")  
Voltage  
4 = 4V  
Dielectric  
Z = X7S  
Capacitance Capacitance  
Failure  
Rate  
A = N/A  
Special  
Code  
A = Std.  
Product  
Terminations  
T = Plated Ni  
and Sn  
Packaging  
2 = 7" Reel  
Code (In pF)  
2 Sig. Digits +  
Number of  
Zeros  
Tolerance  
K = 10ꢀ  
M = 20ꢀ  
6 = 6.3V  
Z = 10V  
Y = 16V  
3 = 25V  
5 = 50V  
1 = 100V  
2 = 200V  
4 = 13" Reel  
7 = Bulk Cass.  
NOTE: Contact factory for availability of Tolerance Options for Specific Part Numbers.  
TYPICAL ELECTRICAL CHARACTERISTICS  
X7S Dielectric  
Typical Temperature Coefficient  
Insulation Resistance vs Temperature  
Capacitance vs. Frequency  
10,000  
1,000  
100  
10  
5
+30  
+20  
+10  
0
-5  
0
-10  
-20  
-30  
-10  
-15  
-20  
-25  
-60 -40 -20  
0
20 40 60 80 100 120 140  
0
0
20  
40  
60  
80  
100  
120  
1KHz  
10 KHz  
100 KHz  
1 MHz  
10 MHz  
Temperature (°C)  
Frequency  
Temperature °C  
Variation of Impedance with Cap Value  
Impedance vs. Frequency  
1,000 pF vs. 10,000 pF - X7S  
0805  
Variation of Impedance with Chip Size  
Impedance vs. Frequency  
100,000 pF - X7S  
Variation of Impedance with Chip Size  
Impedance vs. Frequency  
10,000 pF - X7S  
10  
10.00  
10  
1206  
0805  
1210  
1206  
0805  
1210  
1,000 pF  
10,000 pF  
1.0  
0.1  
.01  
1.00  
1.0  
0.10  
0.01  
0.1  
.01  
100  
1,000  
1
10  
100  
1000  
10  
100  
1,000  
1
10  
Frequency, MHz  
Frequency, MHz  
Frequency, MHz  
20  
X7S Dielectric  
Specifications and Test Methods  
Parameter/Test  
Operating Temperature Range  
Capacitance  
X7S Specification Limits  
Measuring Conditions  
Temperature Cycle Chamber  
-55ºC to +125ºC  
Within specified tolerance  
2.5ꢀ for 50V DC rating  
3.0ꢀ for 25V DC rating  
3.5ꢀ for 16V DC rating  
5.0ꢀ for 10V DC rating  
100,000MΩ or 1000MΩ - µF,  
whichever is less  
Freq.: 1.0 kHz 10ꢀ  
Voltage: 1.0Vrms .2V  
For Cap ꢃ 10 µF, 0.5Vrms ꢄ 120Hz  
Dissipation Factor  
Charge device with rated voltage for  
120 5 secs ꢄ room temp/humidity  
Charge device with 300ꢀ of rated voltage for  
1-5 seconds, w/charge and discharge current  
limited to 50 mA (max)  
Insulation Resistance  
Dielectric Strength  
No breakdown or visual defects  
Appearance  
Capacitance  
Variation  
Dissipation  
Factor  
No defects  
Deflection: 2mm  
Test Time: 30 seconds  
12ꢀ  
Resistance to  
Flexure  
1mm/sec  
Meets Initial Values (As Above)  
Stresses  
Insulation  
Resistance  
Initial Value x 0.3  
90 mm  
95ꢀ of each terminal should be covered  
with fresh solder  
Dip device in eutectic solder at 230 5ºC  
for 5.0 0.5 seconds  
Solderability  
Appearance  
Capacitance  
Variation  
Dissipation  
Factor  
Insulation  
Resistance  
Dielectric  
Strength  
Appearance  
Capacitance  
Variation  
No defects, ꢂ25ꢀ leaching of either end terminal  
7.5ꢀ  
Dip device in eutectic solder at 260ºC for 60  
seconds. Store at room temperature for 24  
2
Resistance to  
Solder Heat  
Meets Initial Values (As Above)  
Meets Initial Values (As Above)  
hours before measuring electrical properties.  
Meets Initial Values (As Above)  
No visual defects  
7.5ꢀ  
Step 1: -55ºC 2º  
Step 2: Room Temp  
30 3 minutes  
3 minutes  
Dissipation  
Factor  
Insulation  
Resistance  
Dielectric  
Strength  
Appearance  
Capacitance  
Variation  
Dissipation  
Factor  
Insulation  
Resistance  
Dielectric  
Strength  
Appearance  
Capacitance  
Variation  
Dissipation  
Factor  
Insulation  
Resistance  
Dielectric  
Strength  
Thermal  
Shock  
Meets Initial Values (As Above)  
Meets Initial Values (As Above)  
Step 3: +125ºC 2º  
Step 4: Room Temp  
30 3 minutes  
3 minutes  
Repeat for 5 cycles and measure after  
24 2 hours at room temperature  
Meets Initial Values (As Above)  
No visual defects  
Charge device with 1.5 rated voltage (10V) in  
test chamber set at 125ºC 2ºC  
for 1000 hours (+48, -0)  
12.5ꢀ  
Initial Value x 2.0 (See Above)  
Initial Value x 0.3 (See Above)  
Load Life  
Remove from test chamber and stabilize  
at room temperature for 24 2 hours  
before measuring.  
Meets Initial Values (As Above)  
No visual defects  
Store in a test chamber set at 85ºC 2ºC/  
85ꢀ 5ꢀ relative humidity for 1000 hours  
(+48, -0) with rated voltage applied.  
12.5ꢀ  
Load  
Humidity  
Initial Value x 2.0 (See Above)  
Initial Value x 0.3 (See Above)  
Meets Initial Values (As Above)  
Remove from chamber and stabilize at  
room temperature and humidity for  
24 2 hours before measuring.  
21  
X7S Dielectric  
Capacitance Range  
PREFERRED SIZES ARE SHADED  
SIZE  
0402  
0603  
0805  
1206  
1210  
Soldering  
Packaging  
Reflow/Wave  
All Paper  
Reflow/Wave  
All Paper  
Reflow/Wave  
Reflow/Wave  
Reflow Only  
Paper/Embossed  
Paper/Embossed  
Paper/Embossed  
mm  
(in.)  
1.00 0.10  
1.60 0.15  
2.01 0.20  
3.20 0.20  
3.20 0.20  
(L) Length  
(0.040 0.004)  
(0.063 0.006)  
(0.079 0.008)  
(0.126 0.008)  
(0.126 0.008)  
mm  
(in.)  
0.50 0.10  
(0.020 0.004)  
0.81 0.15  
(0.032 0.006)  
1.25 0.20  
(0.049 0.008)  
1.60 0.20  
(0.063 0.008)  
2.50 0.20  
(0.098 0.008)  
(W) Width  
mm  
(in.)  
0.25 0.15  
(0.010 0.006)  
0.35 0.15  
(0.014 0.006)  
0.50 0.25  
(0.020 0.010)  
0.50 0.25  
(0.020 0.010)  
0.50 0.25  
(0.020 0.010)  
(t) Terminal  
WVDC  
6.3  
6.3  
25  
4
6.3  
10  
6.3  
Cap  
(pF)  
100  
150  
220  
330  
W
L
470  
680  
T
1000  
1500  
2200  
3300  
4700  
6800  
0.010  
0.015  
0.022  
0.033  
0.047  
0.068  
0.10  
0.15  
0.22  
0.33  
0.47  
0.68  
1.0  
t
Cap  
(µF  
C
C
C
C
G
G
G
G
G
1.5  
2.2  
3.3  
4.7  
N
N
N
N
Q
Q
Q
Q
Q
10  
22  
Z
47  
100  
WVDC  
6.3  
6.3  
25  
4
6.3  
10  
6.3  
SIZE  
0402  
0603  
0805  
1206  
1210  
Letter  
Max.  
Thickness (0.013)  
A
0.33  
C
0.56  
(0.022)  
E
0.71  
(0.028)  
G
0.90  
(0.035)  
J
0.94  
(0.037)  
K
1.02  
(0.040)  
M
1.27  
(0.050)  
N
1.40  
(0.055)  
P
1.52  
(0.060)  
Q
1.78  
(0.070)  
X
2.29  
(0.090)  
Y
2.54  
(0.100)  
Z
2.79  
(0.110)  
PAPER  
EMBOSSED  
22  
X5R Dielectric  
General Specifications  
GENERAL DESCRIPTION  
• General Purpose Dielectric for Ceramic Capacitors  
• EIA Class II Dielectric  
Temperature variation of capacitance is within 15ꢀ  
from -55ꢁC to +85ꢁC  
• Well suited for decoupling and filtering applications  
• Available in High Capacitance values (up to 100µF)  
PART NUMBER (see page 2 for complete part number explanation)  
1210  
4
D
107  
M
A
T
2
A
Size  
(L" x W")  
Voltage  
4 = 4V  
Dielectric  
D = X5R  
Capacitance Capacitance  
Failure  
Rate  
A = N/A  
Special  
Code  
A = Std.  
Terminations  
T = Plated Ni  
and Sn  
Packaging  
2 = 7" Reel  
4 = 13" Reel  
7 = Bulk Cass.  
9 = Bulk  
Code (In pF)  
2 Sig. Digits +  
Number of  
Zeros  
Tolerance  
K = 10ꢀ  
M = 20ꢀ  
6 = 6.3V  
Z = 10V  
Y = 16V  
3 = 25V  
D = 35V  
5 = 50V  
NOTE: Contact factory for availability of Tolerance Options for Specific Part Numbers.  
Contact factory for non-specified capacitance values.  
TYPICAL ELECTRICAL CHARACTERISTICS  
Temperature Coefficient  
Insulation Resistance vs Temperature  
10,000  
1,000  
100  
20  
15  
10  
5
0
-5  
-10  
-15  
-20  
0
-60 -40  
-20  
0
+20 +40 +60 +80  
0
20  
40  
60  
80  
100  
120  
Temperature °C  
Temperature °C  
23  
X5R Dielectric  
Specifications and Test Methods  
Parameter/Test  
Operating Temperature Range  
Capacitance  
X5R Specification Limits  
Measuring Conditions  
Temperature Cycle Chamber  
-55ºC to +85ºC  
Within specified tolerance  
2.5ꢀ for 50V DC rating  
3.0ꢀ for 25V DC rating  
Freq.: 1.0 kHz 10ꢀ  
Voltage: 1.0Vrms .2V  
For Cap ꢃ 10 µF, 0.5Vrms ꢄ 120Hz  
Dissipation Factor  
12.5ꢀ Max. for 16V DC rating and lower  
Contact Factory for DF by PN  
10,000MΩ or 500MΩ - µF,  
whichever is less  
Charge device with rated voltage for  
120 5 secs ꢄ room temp/humidity  
Charge device with 300ꢀ of rated voltage for  
1-5 seconds, w/charge and discharge current  
limited to 50 mA (max)  
Insulation Resistance  
Dielectric Strength  
No breakdown or visual defects  
Appearance  
Capacitance  
Variation  
Dissipation  
Factor  
No defects  
Deflection: 2mm  
Test Time: 30 seconds  
12ꢀ  
Resistance to  
Flexure  
1mm/sec  
Meets Initial Values (As Above)  
Stresses  
Insulation  
Resistance  
Initial Value x 0.3  
90 mm  
95ꢀ of each terminal should be covered  
with fresh solder  
Dip device in eutectic solder at 230 5ºC  
for 5.0 0.5 seconds  
Solderability  
Appearance  
Capacitance  
Variation  
Dissipation  
Factor  
Insulation  
Resistance  
Dielectric  
Strength  
Appearance  
Capacitance  
Variation  
No defects, ꢂ25ꢀ leaching of either end terminal  
7.5ꢀ  
Dip device in eutectic solder at 260ºC for 60  
seconds. Store at room temperature for 24  
2
Resistance to  
Solder Heat  
Meets Initial Values (As Above)  
Meets Initial Values (As Above)  
hours before measuring electrical properties.  
Meets Initial Values (As Above)  
No visual defects  
7.5ꢀ  
Step 1: -55ºC 2º  
Step 2: Room Temp  
30 3 minutes  
3 minutes  
Dissipation  
Factor  
Insulation  
Resistance  
Dielectric  
Strength  
Appearance  
Capacitance  
Variation  
Dissipation  
Factor  
Insulation  
Resistance  
Dielectric  
Strength  
Appearance  
Capacitance  
Variation  
Dissipation  
Factor  
Insulation  
Resistance  
Dielectric  
Strength  
Thermal  
Shock  
Meets Initial Values (As Above)  
Meets Initial Values (As Above)  
Step 3: +85ºC 2º  
Step 4: Room Temp  
30 3 minutes  
3 minutes  
Repeat for 5 cycles and measure after  
24 2 hours at room temperature  
Charge device with 1.5X rated voltage in  
test chamber set at 85ºC 2ºC for 1000 hours  
(+48, -0). Note: Contact factory for *optional  
specification part numbers that are tested at  
ꢂ 1.5X rated voltage.  
Meets Initial Values (As Above)  
No visual defects  
12.5ꢀ  
Initial Value x 2.0 (See Above)  
Initial Value x 0.3 (See Above)  
Load Life  
Remove from test chamber and stabilize  
at room temperature for 24 2 hours  
before measuring.  
Meets Initial Values (As Above)  
No visual defects  
Store in a test chamber set at 85ºC 2ºC/  
85ꢀ 5ꢀ relative humidity for 1000 hours  
(+48, -0) with rated voltage applied.  
12.5ꢀ  
Load  
Humidity  
Initial Value x 2.0 (See Above)  
Initial Value x 0.3 (See Above)  
Meets Initial Values (As Above)  
Remove from chamber and stabilize at  
room temperature and humidity for  
24 2 hours before measuring.  
24  
X5R Dielectric  
Capacitance Range  
PREFERRED SIZES ARE SHADED  
SIZE  
0201  
0402  
0603  
0805  
1206  
1210  
1812  
Soldering  
Packaging  
Reflow Only  
All Paper  
Reflow/Wave  
All Paper  
Reflow/Wave  
All Paper  
Reflow/Wave  
Reflow/Wave  
Reflow Only  
Reflow Only  
Paper/Embossed  
Paper/Embossed  
Paper/Embossed  
All Embossed  
mm  
(in.)  
0.60 0.03  
1.00 0.10  
1.60 0.15  
2.01 0.20  
3.20 0.20  
3.20 0.20  
4.50 0.30  
(L) Length  
(0.024 0.001)  
(0.040 0.004)  
(0.063 0.006)  
(0.079 0.008)  
(0.126 0.008)  
(0.126 0.008)  
(0.177 0.012)  
mm  
(in.)  
0.30 0.03  
(0.011 0.001)  
0.50 0.10  
(0.020 0.004)  
0.81 0.15  
(0.032 0.006)  
1.25 0.20  
(0.049 0.008)  
1.60 0.20  
(0.063 0.008)  
2.50 0.20  
(0.098 0.008)  
3.20 0.20  
(0.126 0.008)  
(W) Width  
mm  
(in.)  
0.15 0.05  
(0.006 0.002)  
0.25 0.15  
(0.010 0.006)  
0.35 0.15  
(0.014 0.006)  
0.50 0.25  
(0.020 0.010)  
0.50 0.25  
(0.020 0.010)  
0.50 0.25  
(0.020 0.010)  
0.61 0.36  
(0.024 0.014)  
(t) Terminal  
WVDC  
4
6.3 10 16 25  
4
6.3 10 16 25 50  
4
6.3 10 16 25 35 50 6.3 10 16 25 35 50 6.3 10 16 25 35 50  
4
6.3 10 16 25 35 50 6.3 10 25 50  
Cap  
(pF)  
100  
150  
220  
A
A
A
C
330  
470  
680  
A
A
A
C
C
C
W
L
T
1000  
1500  
2200  
A
A
A
A
C
C
C
A
t
3300  
4700  
6800  
A
A
A
C
C
C
G
G
Cap  
(µF)  
0.010  
0.015  
0.022  
A
C
C
G
G
G
G
G
G
G
A
*
*
C
C
C
C
N
0.033  
0.047  
0.068  
C
C
C
G
G
G
G
G
G
G
G
N
N
N
A
0.10  
0.15  
0.22  
A
*
*
C
C
G
G
G
G
N
N
N
N
N
N
A*  
A
C
*
*
G
Q
0.33  
0.47  
0.68  
G
G
G
G
N
N
N
C*  
C
Q
Q
Q
X
1.0  
1.5  
2.2  
C
*
*
C
*
*
C*  
G
G
G
J*  
N
N
N
P*  
Q
Q
X
Z
X
X
X
C
C
G
*
G*  
J*  
J*  
*
N
N
Q
3.3  
4.7  
10  
J*  
J
J
J
*
*
*
J
J
*
*
J
N
N
N
N
Q
Q
Q
Q
Q
Q
E*  
J*  
N*  
N*  
*
Q
Q
Q
Q
Z
Z
K
N*  
N*  
N*  
Q*  
X
Z
Z*  
Z
22  
47  
N*  
*
*
Q*  
Q*  
Q*  
Z
Z
Z*  
Q*  
Z*  
100  
WVDC  
Z
4
*
Z*  
6.3 10 16 25 35 50 6.3 10 25 50  
4
6.3 10 16 25  
4
6.3 10 16 25 50  
4
6.3 10 16 25 35 50 6.3 10 16 25 35 50 6.3 10 16 25 35 50  
SIZE  
0201  
0402  
0603  
0805  
1206  
1210  
1812  
Letter  
Max.  
Thickness (0.013)  
A
0.33  
C
0.56  
(0.022)  
E
0.71  
(0.028)  
G
0.90  
(0.035)  
J
K
1.02  
(0.040)  
M
1.27  
(0.050)  
N
1.40  
(0.055)  
P
1.52  
(0.060)  
Q
1.78  
(0.070)  
X
2.29  
(0.090)  
Y
2.54  
(0.100)  
Z
2.79  
(0.110)  
0.94  
(0.037)  
PAPER  
EMBOSSED  
= Under Development  
= *Optional Specifications – Contact factory  
NOTE: Contact factory for non-specified capacitance values  
25  
Y5V Dielectric  
General Specifications  
Y5V formulations are for general-purpose use in a limited  
temperature range. They have a wide temperature  
characteristic of +22ꢀ –82ꢀ capacitance change over the  
operating temperature range of –30ꢁC to +85ꢁC.  
These characteristics make Y5V ideal for decoupling  
applications within limited temperature range.  
PART NUMBER (see page 2 for complete part number explanation)  
0805  
3
G
104  
Z
A
T
2
A
Size  
(L" x W")  
Voltage  
6.3V = 6  
10V = Z  
16V = Y  
25V = 3  
50V = 5  
Dielectric  
Y5V = G  
Capacitance Capacitance  
Failure  
Rate  
A = Not  
Applicable  
Terminations  
T = Plated Ni  
and Sn  
Packaging  
2 = 7" Reel  
4 = 13" Reel  
Special  
Code  
A = Std.  
Product  
Code (In pF)  
2 Sig. Digits +  
Number of  
Zeros  
Tolerance  
Z = +80 –20ꢀ  
Capacitance Change  
vs. DC Bias Voltage  
Temperature Coefficient  
Insulation Resistance vs. Temperature  
10,000  
+20  
+10  
0
+40  
+20  
0
-10  
1,000  
100  
0
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-20  
-40  
-60  
-80  
-100  
-55 -35  
+125  
+20  
+30  
+40 +50 +60  
+70 +80 +90  
-15 +5 +25 +45 +65 +85 +105  
0
20  
40  
60  
100  
80  
Temperature °C  
Temperature °C  
% DC Bias Voltage  
0.1 F - 0603  
Impedance vs. Frequency  
0.22 F - 0805  
Impedance vs. Frequency  
1 F - 1206  
Impedance vs. Frequency  
1,000  
100  
10  
1,000  
10,000  
1,000  
100  
10  
1
100  
10  
1
1
0.1  
0.1  
0.1  
0.01  
10,000  
0.01  
10,000  
0.01  
10,000  
100,000  
100,000  
100,000  
1,000,000  
10,000,000  
1,000,000  
10,000,000  
1,000,000  
10,000,000  
Frequency (Hz)  
Frequency (Hz)  
Frequency (Hz)  
26  
Y5V Dielectric  
Specifications and Test Methods  
Parameter/Test  
Operating Temperature Range  
Capacitance  
Y5V Specification Limits  
Measuring Conditions  
Temperature Cycle Chamber  
-30ºC to +85ºC  
Within specified tolerance  
5.0ꢀ for 50V DC rating  
7.0ꢀ for 25V DC rating  
9.0ꢀ for 16V DC rating  
12.5ꢀ for 10V DC rating  
10,000MΩ or 500MΩ - µF,  
whichever is less  
Freq.: 1.0 kHz 10ꢀ  
Voltage: 1.0Vrms .2V  
For Cap ꢃ 10 µF, 0.5Vrms ꢄ 120Hz  
Dissipation Factor  
Charge device with rated voltage for  
120 5 secs ꢄ room temp/humidity  
Charge device with 300ꢀ of rated voltage for  
1-5 seconds, w/charge and discharge current  
limited to 50 mA (max)  
Insulation Resistance  
Dielectric Strength  
No breakdown or visual defects  
Appearance  
Capacitance  
Variation  
Dissipation  
Factor  
No defects  
Deflection: 2mm  
Test Time: 30 seconds  
30ꢀ  
Resistance to  
Flexure  
1mm/sec  
Meets Initial Values (As Above)  
Stresses  
Insulation  
Resistance  
Initial Value x 0.1  
90 mm  
95ꢀ of each terminal should be covered  
with fresh solder  
Dip device in eutectic solder at 230 5ºC  
for 5.0 0.5 seconds  
Solderability  
Appearance  
Capacitance  
Variation  
Dissipation  
Factor  
Insulation  
Resistance  
Dielectric  
Strength  
Appearance  
Capacitance  
Variation  
No defects, ꢂ25ꢀ leaching of either end terminal  
20ꢀ  
Dip device in eutectic solder at 260ºC for 60  
seconds. Store at room temperature for 24  
2
Resistance to  
Solder Heat  
Meets Initial Values (As Above)  
Meets Initial Values (As Above)  
hours before measuring electrical properties.  
Meets Initial Values (As Above)  
No visual defects  
20ꢀ  
Step 1: -30ºC 2º  
Step 2: Room Temp  
30 3 minutes  
3 minutes  
Dissipation  
Factor  
Insulation  
Resistance  
Dielectric  
Strength  
Appearance  
Capacitance  
Variation  
Dissipation  
Factor  
Insulation  
Resistance  
Dielectric  
Strength  
Appearance  
Capacitance  
Variation  
Dissipation  
Factor  
Insulation  
Resistance  
Dielectric  
Strength  
Thermal  
Shock  
Meets Initial Values (As Above)  
Meets Initial Values (As Above)  
Step 3: +85ºC 2º  
Step 4: Room Temp  
30 3 minutes  
3 minutes  
Repeat for 5 cycles and measure after  
24 2 hours at room temperature  
Meets Initial Values (As Above)  
No visual defects  
Charge device with twice rated voltage in  
test chamber set at 85ºC 2ºC  
for 1000 hours (+48, -0)  
30ꢀ  
Initial Value x 1.5 (See Above)  
Initial Value x 0.1 (See Above)  
Load Life  
Remove from test chamber and stabilize  
at room temperature for 24 2 hours  
before measuring.  
Meets Initial Values (As Above)  
No visual defects  
Store in a test chamber set at 85ºC 2ºC/  
85ꢀ 5ꢀ relative humidity for 1000 hours  
(+48, -0) with rated voltage applied.  
30ꢀ  
Load  
Humidity  
Initial Value x 1.5 (See above)  
Initial Value x 0.1 (See Above)  
Meets Initial Values (As Above)  
Remove from chamber and stabilize at  
room temperature and humidity for  
24 2 hours before measuring.  
27  
Y5V Dielectric  
Capacitance Range  
PREFERRED SIZES ARE SHADED  
SIZE  
Soldering  
Packaging  
0201  
Reflow Only  
All Paper  
0402  
Reflow/Wave  
All Paper  
0603  
Reflow/Wave  
All Paper  
0805  
1206  
1210  
Reflow/Wave  
Reflow/Wave  
Reflow Only  
Paper/Embossed  
Paper/Embossed  
Paper/Embossed  
mm  
(in.)  
0.60 0.03  
(0.024 0.001)  
1.00 0.10  
(0.040 0.004)  
1.60 0.15  
(0.063 0.006)  
2.01 0.20  
(0.079 0.008)  
3.20 0.20  
(0.126 0.008)  
3.20 0.20  
(0.126 0.008)  
(L) Length  
mm  
(in.)  
0.30 0.03  
(0.011 0.001)  
0.50 0.10  
(0.020 0.004)  
.81 0.15  
(0.032 0.006)  
1.25 0.20  
(0.049 0.008)  
1.60 0.20  
(0.063 0.008)  
2.50 0.20  
(0.098 0.008)  
(W) Width  
mm  
(in.)  
0.15 0.05  
(0.006 0.002)  
0.25 0.15  
(0.010 0.006)  
0.35 0.15  
(0.014 0.006)  
0.50 0.25  
(0.020 0.010)  
0.50 0.25  
(0.020 0.010)  
.50 0.25  
(0.020 0.010)  
(t) Terminal  
WVDC  
6.3  
10  
6
10  
16  
25  
50  
10  
16  
25  
50  
10  
16  
25  
50  
10  
16  
25  
50  
10  
16  
25  
50  
Cap  
(pF)  
820  
1000  
2200  
A
A
W
L
4700  
0.010  
0.022  
A
A
T
Cap  
(µF)  
A
A
0.047  
0.10  
0.22  
A
C
C
t
C
G
G
G
K
N
G
0.33  
0.47  
1.0  
G
G
G
C
C
6
C
C
G
N
N
N
M
M
M
N
2.2  
4.7  
10.0  
N
N
P
Q
N
Q
N
Q
Q
Q
X
X
22.0  
47.0  
WVDC  
6.3  
10  
10  
16  
25  
50  
10  
16  
25  
50  
10  
16  
25  
50  
10  
16  
25  
50  
10  
16  
25  
50  
SIZE  
0201  
0402  
0603  
0805  
1206  
1210  
Letter  
Max.  
Thickness (0.013)  
A
0.33  
C
0.56  
(0.022)  
E
0.71  
(0.028)  
G
0.90  
(0.035)  
J
0.94  
(0.037)  
K
1.02  
(0.040)  
M
1.27  
(0.050)  
N
1.40  
(0.055)  
P
1.52  
(0.060)  
Q
1.78  
(0.070)  
X
2.29  
(0.090)  
Y
2.54  
(0.100)  
Z
2.79  
(0.110)  
PAPER  
EMBOSSED  
28  
MLCC Tin/Lead Termination “B”  
General Specifications  
AVX Corporation will support those customers for  
commercial and military Multilayer Ceramic Capacitors with  
a termination consisting of 5ꢀ minimum lead. This  
termination is indicated by the use of a “B” in the 12th  
position of the AVX Catalog Part Number. This fulfills AVX’s  
commitment to providing a full range of products to our  
customers. AVX has provided in the following pages a full  
range of values that we are currently offering in this special  
“B” termination. Please contact the factory if you require  
additional information on our MLCC Tin/Lead Termination  
“B” products.  
PART NUMBER (see page 2 for complete part number explanation)  
LD05  
A
101  
J
A
B
2
A
5
Size  
LD02 - 0402  
LD03 - 0603  
LD04 - 0504*  
LD05 - 0805  
LD06 - 1206  
LD10 - 1210  
LD12 - 1812  
LD13 - 1825  
LD14 - 2225  
LD20 - 2220  
Dielectric  
Capacitance  
Capacitance  
Tolerance  
Failure  
Rate  
A = Not  
Applicable  
Terminations  
B = 5ꢀ min lead  
X = FLEXITERM®  
with 5ꢀ min  
Packaging  
2 = 7" Reel  
Special  
Code  
A = Std.  
Product  
Voltage  
6.3V = 6  
10V = Z  
16V = Y  
25V = 3  
35V = D  
50V = 5  
100V = 1  
200V = 2  
500V = 7  
C0G (NP0) = A Code (In pF)  
X7R = C  
X5R = D  
X8R = F  
B = .10 pF (ꢂ10pF)  
C = .25 pF (ꢂ10pF)  
D = .50 pF (ꢂ10pF)  
4 = 13" Reel  
7 = Bulk Cass.  
9 = Bulk  
2 Sig. Digits +  
Number of  
Zeros  
lead**  
F
=
1ꢀ (10 pF)  
G = 2ꢀ (10 pF)  
Contact  
Factory  
For  
**X7R only  
J
=
5ꢀ  
K = 10ꢀ  
M = 20ꢀ  
Multiples  
*LD04 has the same CV ranges as LD03.  
See FLEXITERM® section  
for CV options  
NOTE: Contact factory for availability of Tolerance Options for Specific Part Numbers.  
Contact factory for non-specified capacitance values.  
NP0  
X7R  
X7S  
X5R  
Y5V  
Refer to page 4 for Electrical Graphs  
Refer to page 16 for Electrical Graphs  
Refer to page 20 for Electrical Graphs  
Refer to page 23 for Electrical Graphs  
Refer to page 26 for Electrical Graphs  
29  
MLCC Tin/Lead Termination “B”  
Capacitance Range (NP0 Dielectric)  
PREFERRED SIZES ARE SHADED  
SIZE  
LD02  
LD03  
LD05  
LD06  
Soldering  
Packaging  
Reflow/Wave  
All Paper  
Reflow/Wave  
All Paper  
Reflow/Wave  
Reflow/Wave  
Paper/Embossed  
Paper/Embossed  
mm  
(in.)  
1.00 0.10  
1.60 0.15  
2.01 0.20  
3.20 0.20  
(L) Length  
(0.040 0.004)  
(0.063 0.006)  
(0.079 0.008)  
(0.126 0.008)  
mm  
(in.)  
0.50 0.10  
(0.020 0.004)  
0.81 0.15  
(0.032 0.006)  
1.25 0.20  
(0.049 0.008)  
1.60 0.20  
(0.063 0.008)  
(W) Width  
mm  
(in.)  
0.25 0.15  
(0.010 0.006)  
0.35 0.15  
(0.014 0.006)  
0.50 0.25  
(0.020 0.010)  
0.50 0.25  
(0.020 0.010)  
(t) Terminal  
WVDC  
0.5  
1.0  
1.2  
1.5  
1.8  
2.2  
2.7  
3.3  
3.9  
4.7  
5.6  
6.8  
8.2  
10  
12  
15  
18  
22  
27  
33  
39  
47  
56  
68  
16  
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
25  
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
50  
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
16  
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
25  
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
50  
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
100  
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
16  
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
25  
50  
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
N
N
100  
200  
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
16  
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
M
M
M
25  
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
M
M
M
50  
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
M
M
M
M
M
M
M
100  
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
M
M
P
P
P
P
P
200  
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
500  
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
Cap  
(pF)  
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
82  
100  
120  
150  
180  
220  
270  
330  
390  
470  
560  
680  
820  
1000  
1200  
1500  
1800  
2200  
2700  
3300  
3900  
4700  
5600  
6800  
8200  
0.010  
0.012  
0.015  
0.018  
0.022  
0.027  
0.033  
0.039  
0.047  
0.068  
0.082  
0.1  
J
M
M
M
M
M
M
P
M
M
M
M
M
J
J
J
J
M
Q
Q
Q
Cap  
(µF)  
W
L
T
t
WVDC  
16  
25  
50  
16  
25  
50  
100  
16  
25  
50  
100  
200  
16  
25  
50  
100  
200  
500  
SIZE  
LD02  
LD03  
LD05  
LD06  
Letter  
Max.  
Thickness (0.013)  
A
0.33  
C
0.56  
(0.022)  
E
0.71  
(0.028)  
G
0.90  
(0.035)  
J
0.94  
(0.037)  
K
1.02  
(0.040)  
M
1.27  
(0.050)  
N
1.40  
(0.055)  
P
1.52  
(0.060)  
Q
1.78  
(0.070)  
X
2.29  
(0.090)  
Y
2.54  
(0.100)  
Z
2.79  
(0.110)  
PAPER  
EMBOSSED  
30  
MLCC Tin/Lead Termination “B”  
Capacitance Range (NP0 Dielectric)  
PREFERRED SIZES ARE SHADED  
SIZE  
LD10  
LD12  
LD13  
LD14  
Soldering  
Reflow Only  
Reflow Only  
Reflow Only  
Reflow Only  
Packaging  
Paper/Embossed  
All Embossed  
All Embossed  
All Embossed  
mm  
(in.)  
3.20 0.20  
4.50 0.30  
4.50 0.30  
5.72 0.25  
(L) Length  
(0.126 0.008)  
(0.177 0.012)  
(0.177 0.012)  
(0.225 0.010)  
mm  
(in.)  
2.50 0.20  
(0.098 0.008)  
3.20 0.20  
(0.126 0.008)  
6.40 0.40  
(0.252 0.016)  
6.35 0.25  
(0.250 0.010)  
(W) Width  
mm  
(in.)  
0.50 0.25  
(0.020 0.010)  
0.61 0.36  
(0.024 0.014)  
0.61 0.36  
(0.024 0.014)  
0.64 0.39  
(0.025 0.015)  
(t) Terminal  
WVDC  
0.5  
1.0  
25  
50  
100  
200  
500  
25  
50  
100  
200  
500  
50  
100  
200  
50  
100  
200  
Cap  
(pF)  
1.2  
1.5  
1.8  
2.2  
2.7  
3.3  
W
L
T
3.9  
4.7  
5.6  
6.8  
8.2  
t
10  
12  
J
J
15  
J
18  
J
22  
J
27  
J
33  
J
39  
J
47  
J
56  
J
68  
J
82  
J
100  
120  
150  
180  
220  
270  
330  
390  
470  
560  
680  
820  
1000  
1200  
1500  
1800  
2200  
2700  
3300  
3900  
4700  
5600  
6800  
8200  
0.010  
0.012  
0.015  
0.018  
0.022  
0.027  
0.033  
0.039  
0.047  
J
J
J
J
J
J
J
M
M
M
M
M
M
M
M
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
M
M
M
M
K
K
K
K
K
P
P
P
P
P
X
M
M
M
M
P
Q
Q
Q
Q
X
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
P
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
P
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
Y
P
P
P
P
P
P
P
P
P
P
P
P
P
P
Y
Y
Y
Y
M
M
M
Q
Q
J
M
M
K
K
M
M
M
M
M
M
M
M
M
M
Cap  
(µF)  
K
M
M
M
M
M
M
M
P
P
P
P
Y
P
P
P
P
0.068  
0.082  
0.1  
M
M
M
M
P
Q
Q
WVDC  
25  
50  
100  
200  
500  
25  
50  
100  
200  
500  
50  
100  
200  
50  
100  
200  
SIZE  
LD10  
LD12  
LD13  
LD14  
Letter  
Max.  
Thickness (0.013)  
A
0.33  
C
0.56  
(0.022)  
E
0.71  
(0.028)  
G
0.90  
(0.035)  
J
0.94  
(0.037)  
K
1.02  
(0.040)  
M
1.27  
(0.050)  
N
1.40  
(0.055)  
P
1.52  
(0.060)  
Q
1.78  
(0.070)  
X
2.29  
(0.090)  
Y
2.54  
(0.100)  
Z
2.79  
(0.110)  
PAPER  
EMBOSSED  
31  
MLCC Tin/Lead Termination “B”  
Capacitance Range (X8R Dielectric)  
SIZE  
LD03  
LD05  
LD06  
WVDC  
270  
330  
470  
680  
25V  
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
50V  
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
25V  
50V  
25V  
50V  
271  
331  
471  
681  
102  
152  
182  
222  
272  
332  
392  
472  
562  
682  
822  
103  
123  
153  
183  
223  
273  
333  
393  
473  
563  
683  
823  
104  
124  
154  
184  
224  
274  
334  
394  
474  
684  
824  
105  
Cap  
(pF)  
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
N
N
N
N
N
N
N
N
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
N
N
N
N
N
N
1000  
1500  
1800  
2200  
2700  
3300  
3900  
4700  
5600  
6800  
8200  
0.01  
0.012  
0.015  
0.018  
0.022  
0.027  
0.033  
0.039  
0.047  
0.056  
0.068  
0.082  
0.1  
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
Cap  
(µF)  
J
J
J
J
J
J
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
0.12  
0.15  
0.18  
0.22  
0.27  
0.33  
0.39  
0.47  
0.68  
0.82  
1
WVDC  
25V  
50V  
25V  
50V  
25V  
50V  
SIZE  
LD03  
LD05  
LD06  
Letter  
Max.  
Thickness (0.013)  
A
0.33  
C
E
0.71  
(0.028)  
G
0.90  
(0.035)  
J
0.94  
(0.037)  
K
1.02  
(0.040)  
M
1.27  
(0.050)  
N
P
1.52  
(0.060)  
Q
1.78  
(0.070)  
X
2.29  
(0.090)  
Y
2.54  
(0.100)  
Z
2.79  
(0.110)  
0.56  
(0.022)  
1.40  
(0.055)  
PAPER  
EMBOSSED  
32  
MLCC Tin/Lead Termination “B”  
Capacitance Range (X7R Dielectric)  
PREFERRED SIZES ARE SHADED  
SIZE  
LD02  
LD03  
LD05  
LD06  
Soldering  
Packaging  
Reflow/Wave  
All Paper  
Reflow/Wave  
All Paper  
Reflow/Wave  
Reflow/Wave  
Paper/Embossed  
Paper/Embossed  
mm  
(in.)  
1.00 0.10  
1.60 0.15  
2.01 0.20  
3.20 0.20  
(L) Length  
(0.040 0.004)  
(0.063 0.006)  
(0.079 0.008)  
(0.126 0.008)  
mm  
(in.)  
0.50 0.10  
(0.020 0.004)  
0.81 0.15  
(0.032 0.006)  
1.25 0.20  
(0.049 0.008)  
1.60 0.20  
(0.063 0.008)  
(W) Width  
mm  
(in.)  
0.25 0.15  
(0.010 0.006)  
0.35 0.15  
(0.014 0.006)  
0.50 0.25  
(0.020 0.010)  
0.50 0.25  
(0.020 0.010)  
(t) Terminal  
WVDC  
16  
25  
50  
6.3  
10  
16  
25  
50  
100  
200  
6.3  
10  
16  
25  
50  
100  
200  
6.3  
10  
16  
25  
50  
100 200  
500  
Cap  
(pF)  
100  
150  
220  
330  
470  
680  
C
C
C
C
C
C
C
C
C
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
N
N
N
N
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
N
N
N
N
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
N
N
N
N
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
N
K
K
K
1000  
1500  
2200  
3300  
4700  
6800  
0.010  
0.015  
0.022  
0.033  
0.047  
0.068  
0.10  
0.15  
0.22  
0.33  
0.47  
0.68  
1.0  
K
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
P
P
Q
Q
J
J
J
J
J
J
J
J
J
J
J
J
J
J
M
M
M
M
P
C
C
C
C
C
C
C
Cap  
(µF  
J
J
J
J
P
G
G
G
G
G
G
M
M
M
M
P
P
N
N
N
N
N
N
N
N
G
G
G
J
J
C*  
G
G
G
M
Q
Q
Q
Q
Q
Q
G
G
N
N
N
N
N*  
J
M
M
Q
Q
Q
Q
J*  
M
M
M
P
Q
M
M
M
Q
Q
J*  
J*  
1.5  
2.2  
J*  
P*  
3.3  
4.7  
10  
P*  
P*  
Q*  
Q*  
Q*  
Q*  
Q*  
P*  
22  
Q*  
47  
100  
WVDC  
16  
25  
50  
6.3  
10  
16  
25  
50  
100  
200  
6.3  
10  
16  
25  
50  
100  
200  
6.3  
10  
16  
25  
50  
100 200  
500  
SIZE  
LD02  
LD03  
LD05  
LD06  
Letter  
Max.  
Thickness (0.013)  
A
0.33  
C
0.56  
(0.022)  
E
0.71  
(0.028)  
G
0.90  
(0.035)  
J
0.94  
(0.037)  
K
M
1.27  
(0.050)  
N
1.40  
(0.055)  
P
Q
1.78  
(0.070)  
X
2.29  
(0.090)  
Y
2.54  
(0.100)  
Z
1.02  
(0.040)  
1.52  
(0.060)  
2.79  
(0.110)  
PAPER  
EMBOSSED  
= Under Development  
33  
MLCC Tin/Lead Termination “B”  
Capacitance Range (X7R Dielectric)  
PREFERRED SIZES ARE SHADED  
SIZE  
LD10  
LD12  
LD13  
LD20  
LD14  
Soldering  
Reflow Only  
Reflow Only  
Reflow Only  
Reflow Only  
Reflow Only  
Packaging  
Paper/Embossed  
All Embossed  
All Embossed  
All Embossed  
All Embossed  
mm  
(in.)  
3.20 0.20  
4.50 0.30  
4.50 0.30  
5.70 0.40  
5.72 0.25  
(L) Length  
(0.126 0.008)  
(0.177 0.012)  
(0.177 0.012)  
(0.225 0.016)  
(0.225 0.010)  
mm  
(in.)  
2.50 0.20  
(0.098 0.008)  
3.20 0.20  
(0.126 0.008)  
6.40 0.40  
(0.252 0.016)  
5.00 0.40  
(0.197 0.016)  
6.35 0.25  
(0.250 0.010)  
(W) Width  
mm  
(in.)  
0.50 0.25  
(0.020 0.010)  
0.61 0.36  
(0.024 0.014)  
0.61 0.36  
(0.024 0.014)  
0.64 0.39  
(0.025 0.015)  
0.64 0.39  
(0.025 0.015)  
(t) Terminal  
WVDC  
10  
16  
25  
50  
100  
200  
500  
50  
100  
200  
500  
50  
100  
25  
50  
100  
200  
50  
100  
Cap  
(pF)  
100  
150  
220  
W
L
330  
470  
T
680  
1000  
1500  
2200  
3300  
4700  
6800  
0.010  
0.015  
0.022  
0.033  
0.047  
0.068  
0.10  
0.15  
0.22  
0.33  
0.47  
0.68  
1.0  
t
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
M
M
N
N
X
X
X
Z
Z
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
M
M
N
N
X
X
X
Z
Z
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
M
P
P
Z
Z
Z
Z
Z
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
M
X
X
Z
Z
Z
Z
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
M
M
M
M
M
M
P
Cap  
(µF  
K
K
K
K
K
K
K
K
K
K
K
M
M
Z
K
K
K
K
K
K
K
K
K
M
P
Q
X
K
K
K
K
K
K
K
P
P
X
K
P
P
X
Z
Z
Z
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
P
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
Z
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
Z
Z
X
X
X
X
X
X
X
X
X
X
X
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
P
P
P
P
P
P
P
P
P
P
P
P
P
X
Q
Q
J
J
J
J
M
M
Z
Z
M
P
Q
Q
X
Z
Z
Z
P
1.5  
2.2  
3.3  
4.7  
10  
22  
Z
Z
Z
Z
Z
Z
47  
100  
WVDC  
10  
16  
25  
50  
100  
200  
500  
50  
100  
200  
500  
50  
100  
25  
50  
100  
200  
50  
100  
SIZE  
LD10  
LD12  
LD13  
LD20  
LD14  
Letter  
Max.  
Thickness (0.013)  
A
0.33  
C
0.56  
(0.022)  
E
0.71  
(0.028)  
G
0.90  
(0.035)  
J
0.94  
(0.037)  
K
1.02  
(0.040)  
M
1.27  
(0.050)  
N
1.40  
(0.055)  
P
1.52  
(0.060)  
Q
1.78  
(0.070)  
X
2.29  
(0.090)  
Y
Z
2.79  
(0.110)  
2.54  
(0.100)  
PAPER  
EMBOSSED  
34  
MLCC Tin/Lead Termination “B”  
Capacitance Range (X5R Dielectric)  
PREFERRED SIZES ARE SHADED  
SIZE  
LD02  
LD03  
LD05  
LD06  
LD10  
LD12  
Soldering  
Packaging  
Reflow/Wave  
All Paper  
Reflow/Wave  
All Paper  
Reflow/Wave  
Reflow/Wave  
Reflow/Wave  
Paper/Embossed  
Paper/Embossed  
Paper/Embossed  
mm  
(in.)  
1.00 0.10  
1.60 0.15  
2.01 0.20  
3.20 0.20  
3.20 0.20  
(L) Length  
(0.040 0.004)  
(0.063 0.006)  
(0.079 0.008)  
(0.126 0.008)  
(0.126 0.008)  
mm  
(in.)  
0.50 0.10  
(0.020 0.004)  
0.81 0.15  
(0.032 0.006)  
1.25 0.20  
(0.049 0.008)  
1.60 0.20  
(0.063 0.008)  
2.50 0.20  
(0.098 0.008)  
(W) Width  
mm  
(in.)  
0.25 0.15  
(0.010 0.006)  
0.35 0.15  
(0.014 0.006)  
0.50 0.25  
(0.020 0.010)  
0.50 0.25  
(0.020 0.010)  
0.50 0.25  
(0.020 0.010)  
(t) Terminal  
WVDC  
4
6.3 10 16 25 50  
4
6.3 10 16 25 35 50 6.3 10 16 25 35 50 6.3 10 16 25 35 50  
4
6.3 10 16 25 35 50 6.3 10 25 50  
Cap  
(pF)  
100  
150  
220  
C
330  
470  
680  
C
C
C
W
L
T
1000  
1500  
2200  
C
C
C
t
3300  
4700  
6800  
C
C
C
G
G
Cap  
(µF)  
0.010  
0.015  
0.022  
C
C
G
G
G
G
G
G
G
C
C
C
C
N
0.033  
0.047  
0.068  
C
C
C
G
G
G
G
G
G
G
G
N
N
N
0.10  
0.15  
0.22  
C
C
G
G
G
G
N
N
N
N
N
N
C*  
C* C*  
G
Q
0.33  
0.47  
0.68  
G
G
G
G
N
N
N
Q
Q
Q
X
1.0  
1.5  
2.2  
C* C* C*  
C* C*  
G
G
G
J*  
N
N
N
P*  
Q
Q
X
Z
X
X
X
G* G* J* J*  
N
N
Q
3.3  
4.7  
10  
J* J* J* J*  
J* J* J*  
K* J*  
N
N
N
N
Q
Q
Q
Q
Q
Q
E*  
N* N*  
Q
Q
Q
Q*  
Q
Z
Z
Z
N* N* N*  
*
X
Z
Z
22  
47  
P*  
*
Q* Q* Q*  
Q*  
Z
Z*  
Z
Z
100  
Z* Z*  
6.3 10 16 25 35 50 6.3 10 25 50  
WVDC  
4
6.3 10 16 25 50  
4
6.3 10 16 25 35 50 6.3 10 16 25 35 50 6.3 10 16 25 35 50  
4
SIZE  
LD02  
LD03  
LD05  
LD06  
LD10  
LD12  
Letter  
Max.  
Thickness (0.013)  
A
0.33  
C
0.56  
(0.022)  
E
0.71  
(0.028)  
G
0.90  
(0.035)  
J
0.94  
(0.037)  
K
1.02  
(0.040)  
M
1.27  
(0.050)  
N
1.40  
(0.055)  
P
1.52  
(0.060)  
Q
1.78  
(0.070)  
X
2.29  
(0.090)  
Y
2.54  
(0.100)  
Z
2.79  
(0.110)  
PAPER  
EMBOSSED  
= Under Development  
= *Optional Specifications – Contact factory  
NOTE: Contact factory for non-specified capacitance values  
35  
MLCC Low Profile  
General Specifications  
GENERAL DESCRIPTION  
AVX introduces the LT series comprising a range of low profile  
products in our X5R and X7R dielectric. X5R is a Class II dielectric  
with temperature varation of capacitance within 15ꢀ from –55ꢁC to  
+85ꢁC. Offerings include 0201, 0402, 0603, 0805 1206, and 1210  
packages in compact, low profile designs. The LT series is ideal for  
decoupling and filtering applications where height clearance is limited.  
AVX is also expanding the low profile products in our X7R dielectric.  
X7R is a Class II dielectric with temperature variation of capacitance  
within 15ꢀ from -55ºC to +125ºC. Please contact the factory for  
availability of any additional values not listed.  
PART NUMBER (see page 2 for complete part number explanation)  
LT05  
Z
D
475  
K
A
T
2
S
Size  
Voltage  
4V = 4  
6.3V = 6  
10V = Z  
16V = Y  
25V = 3  
Dielectric  
X5R = D  
X7R = C  
Capacitance Capacitance  
Failure  
Rate  
A = Not  
Applicable  
Special  
Code  
See table below  
Terminations  
T = Plated Ni  
and Sn  
Packaging  
2 = 7" Reel  
Code (In pF)  
2 Sig. Digits +  
Number of  
Zeros  
Tolerance  
K = 10ꢀ  
M = 20ꢀ  
LT01 - 0201  
LT02 - 0402  
LT03 - 0603  
LT05 - 0805  
LT06 - 1206  
LT10 - 1210  
4 = 13" Reel  
7 = Bulk Cass.  
9 = Bulk  
Contact  
Factory  
For  
Multiples  
NOTE: Contact factory for availability of tolerance options for specific part numbers.  
SIZE  
LT01  
LT02  
LT03  
LT05  
LT06  
LT10  
WVDC  
4
Z
4
6.3  
10  
S
16  
S
4
6.3  
16  
25  
6.3  
10  
16  
X
25  
X
10  
16  
25  
16  
25  
Cap  
(µF)  
104  
0.10  
0.22  
0.47  
1.0  
Q
X
X
X
X
105  
C
S
S
X
1.5  
2.2  
S
X
X
X
4.7  
S
S
W
W
W
25  
W
W
106  
10  
X/W  
X
X
22  
47  
WVDC  
4
4
6.3  
10  
16  
4
6.3  
16  
25  
6.3  
10  
16  
25  
10  
16  
16  
25  
SIZE  
LT01  
LT02  
LT03  
LT05  
LT06  
LT10  
= X7R  
Letter  
Max.  
Thickness (0.006)  
J
0.15  
Z
0.22  
(0.009)  
Q
0.25  
(0.010)  
C
0.36  
(0.014)  
S
0.56  
(0.022)  
X
0.95  
(0.038)  
W
1.02  
(0.040)  
EMBOSSED  
PAPER  
36  
UltraThin Ceramic Capacitors  
UT023D103MAT2C  
The Ultrathin (UT) series of ceramic capacitors is a new product offering from AVX. The UT  
series was designed to meet the stringent thickness requirements of our customers. AVX  
developed a new termination process (FCT - Fine Copper Termination) that provides  
unbeatable flatness and repeatability. The series includes products ꢂ 0.35mm in height  
and is targeted for applications such as Smart cards, Memory modules, High Density SIM  
cards, Mobile phones, MP3 players, and embedded solutions.  
HOW TO ORDER  
UT  
02  
3
D
103  
M
A
T
2
C
Style  
Ultra  
Thin  
Case  
Size  
0402  
Rated  
Voltage  
25V  
Temperature  
Characteristic  
X5R  
Coded  
Cap  
0.01µF  
Cap  
Tolerance  
20%  
Termination  
Style  
Commercial  
Termination  
100ꢀ Sn  
Packaging  
7" Reel = 15,000 pcs  
13" Reel = 50,000 pcs  
Thickness  
0.30mm max  
RECOMMENDED SOLDER  
PAD DIMENSIONS  
L
BL  
mm (inches)  
W
L
BL  
0.50  
0.60  
Top View  
(0.020)  
(0.024)  
End View  
T
Side View  
0.50  
(0.020)  
PART DIMENSIONS  
mm (inches)  
L
W
T
BL  
0.25 0.10  
(0.010 0.004)  
1.70  
(0.067)  
1.00 0.10  
(0.039 0.004)  
0.50 0.10  
(0.020 0.004)  
0.25 0.05  
(0.010 0.002)  
Temperature Coefficient  
20  
15  
10  
5
0
-5  
-10  
-15  
-20  
-80  
-60  
-40  
-20  
0
20  
40  
60  
80  
100  
Temperature ºC  
PERFORMANCE CHARACTERISTICS  
Capacitance Value  
0.01µF  
Capacitance Tolerance  
Dissipation Factor Range  
Operating Temperature  
Temperature Coefficient  
Rated Voltage  
20ꢀ  
3.0ꢀ  
-55ꢁC to +85ꢁC  
15ꢀ  
25V  
Insulation Resistance at 25ºC and Rated Voltage 100,000 Mohms  
Test Frequency 1 Vrms ꢄ 1 KHz  
37  
Automotive MLCC  
Automotive  
GENERAL DESCRIPTION  
AVX Corporation has supported the Automotive Industry requirements for  
Multilayer Ceramic Capacitors consistently for more than 10 years. Products  
have been developed and tested specifically for automotive applications and  
all manufacturing facilities are QS9000 and VDA 6.4 approved.  
As part of our sustained investment in capacity and state of the art  
technology, we are now transitioning from the established Pd/Ag electrode  
system to a Base Metal Electrode system (BME).  
AVX is using AECQ200 as the qualification vehicle for this transition. A detailed  
qualification package is available on request and contains results on a range  
of part numbers including:  
X7R dielectric components containing BME electrode and copper  
terminations with a Ni/Sn plated overcoat.  
X7R dielectric components, BME electrode with epoxy finish for conductive  
glue mounting.  
X7R dielectric components BME electrode and soft terminations with a  
Ni/Sn plated overcoat.  
NP0 dielectric components containing Pd/Ag electrode and silver termina-  
tion with a Ni/Sn plated overcoat.  
HOW TO ORDER  
0805  
5
A
104  
K
4
2
A
T
Size  
0402  
0603  
0805  
1206  
1210 100V = 1  
1812 200V = 2  
500V = 7  
Voltage Dielectric  
Capacitance  
Code (In pF)  
2 Significant  
Digits + Number  
of Zeros  
Capacitance  
Tolerance  
F = 1ꢀ  
(10pF)*  
Failure Rate  
4 = Automotive  
Packaging  
2 = 7" Reel  
4 = 13" Reel  
Special Code  
A = Std. Product  
Terminations  
T = Plated Ni and Sn  
Z = FLEXITERM®**  
10V = Z  
16V = Y  
25V = 3  
50V = 5  
NP0 = A  
X7R = C  
X8R = F  
U = Conductive Epoxy**  
G = 2ꢀ  
(10pF)*  
e.g. 10µF = 106  
**X7R & X8R only  
J = 5ꢀ  
(1µF)  
K = 10ꢀ  
M = 20ꢀ  
*NPO only  
Contact factory for availability of Tolerance Options for Specific Part Numbers.  
NOTE: Contact factory for non-specified capacitance values.  
0402 case size available in T termination only.  
COMMERCIAL VS AUTOMOTIVE MLCC PROCESS COMPARISON  
Commercial  
Automotive  
Administrative  
Design  
Standard Part Numbers.  
Specific Automotive Part Number. Used to control  
supply of product to Automotive customers.  
No restriction on who purchases these parts.  
Minimum ceramic thickness of 0.020"  
Side & End Margins = 0.003" min  
As per EIA RS469  
Minimum Ceramic thickness of 0.029" (0.74mm)  
on all X7R product.  
Dicing  
Side & End Margins = 0.004" min  
Cover Layers = 0.005" min  
Lot Qualification  
(Destructive Physical  
Analysis - DPA)  
Increased sample plan –  
stricter criteria.  
Visual/Cosmetic Quality  
Application Robustness  
Standard process and inspection  
100% inspection  
Standard sampling for accelerated  
wave solder on X7R dielectrics  
Increased sampling for accelerated wave solder on  
X7R and NP0 followed by lot by lot reliability testing.  
All Tests have Accept/Reject Criteria 0/1  
38  
Automotive MLCC  
NP0/X7R Dielectric  
FLEXITERM® FEATURES  
a) Bend Test  
b) Temperature Cycle testing  
The capacitor is soldered to the PC Board as shown:  
FLEXITERM® has the ability to withstand at least 1000  
cycles between –55ꢁC and +125ꢁC  
1mm/sec  
90 mm  
Typical bend test results are shown below:  
Style  
Conventional Term  
Soft Term  
0603  
0805  
1206  
ꢃ2mm  
ꢃ2mm  
ꢃ2mm  
ꢃ5  
ꢃ5  
ꢃ5  
ELECTRODE AND TERMINATION OPTIONS  
NP0 DIELECTRIC  
NP0 Ag/Pd Electrode  
Nickel Barrier Termination  
PCB Application  
Sn  
Ni  
Ag  
Figure 1 Termination Code T  
X7R DIELECTRIC  
X7R Nickel Electrode  
X7R Dielectric  
Soft Termination  
PCB Application  
PCB Application  
Ni  
Ni  
Cu  
Sn  
Ni  
Epoxy  
Ni  
Sn  
Cu  
Figure 2 Termination Code T  
Figure 3 Termination Code Z  
Conductive Epoxy Termination  
Hybrid Application  
Ni  
Cu  
Termination  
Conductive  
Epoxy  
Figure 4 Termination Code U  
39  
Automotive MLCC-NP0  
Capacitance Range  
0603  
0805  
1206  
100V  
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
M
M
M
Q
Q
1210  
1812  
25V  
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
50V  
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
100V  
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
25V  
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
50V  
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
100V  
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
25V  
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
50V  
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
M
M
M
M
M
200V  
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
M
M
M
500V  
25V  
50V  
100V  
200V  
50V  
100V  
100  
120  
150  
180  
220  
270  
330  
390  
470  
510  
560  
680  
820  
101  
121  
151  
181  
221  
271  
331  
391  
471  
561  
681  
821  
102  
122  
152  
182  
222  
272  
332  
392  
472  
103  
10pF  
12  
15  
18  
22  
27  
33  
39  
47  
51  
56  
68  
82  
100  
120  
150  
180  
220  
270  
330  
390  
470  
560  
680  
820  
1000  
1200  
1500  
1800  
2200  
2700  
3300  
3900  
4700  
10nF  
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
M
M
M
M
M
P
M
M
M
M
K
K
K
K
K
K
P
P
25V  
50V  
100V  
25V  
50V  
100V  
25V  
50V  
100V  
200V  
500V  
25V  
50V  
100V  
200V  
50V  
100V  
0603  
0805  
1206  
1210  
1812  
Letter  
Max.  
Thickness (0.013)  
A
0.33  
C
0.56  
(0.022)  
E
0.71  
(0.028)  
G
0.90  
(0.035)  
J
0.94  
(0.037)  
K
1.02  
(0.040)  
M
1.27  
(0.050)  
N
1.40  
(0.055)  
P
1.52  
(0.060)  
Q
1.78  
(0.070)  
X
2.29  
(0.090)  
Y
Z
2.79  
(0.110)  
2.54  
(0.100)  
PAPER  
EMBOSSED  
= Under Development  
40  
Automotive MLCC-X7R  
Capacitance Range  
0402  
0603  
0805  
1206  
1210  
1812  
2220  
16V 25V 50V 16V 25V 50V 100V 200V 16V 25V 50V 100V 200V 16V 25V 50V 100V 200V 500V 16V 25V 50V 100V 50V 100V 25V 50V  
221 Cap .22  
271 (nF) .27  
331  
391  
471  
561  
681  
821  
102  
182  
222  
332  
472  
103  
123  
153  
183  
223  
273  
333  
473  
563  
683  
823  
104  
124  
154  
224  
334  
474  
684  
105 Cap  
.33  
.39  
.47  
.56  
.68  
.82  
1
1.8  
2.2  
3.3  
4.7  
10  
12  
15  
18  
22  
27  
33  
47  
56  
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
M
M
M
Q
Q
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
M
M
M
P
P
Q
Q
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
M
P
P
P
P
P
X
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
M
P
P
P
Q
Q
Z
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
M
P
P
Q
Q
Z
K
K
K
K
K
K
K
K
K
K
K
K
K
M
M
M
M
P
P
P
Q
Q
X
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
M
X
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
M
X
J
M
M
M
M
M
M
M
M
M
M
M
J
J
J
M
M
M
M
M
M
M
Q
Q
Q
Q
Q
68  
82  
100  
120  
150  
220  
330  
470  
680  
1
M
M
M
M
M
M
J
J
J
J
M
M
N
N
N
N
N
N
N
N
N
N
M
M
M
Q
Q
Q
Q
X
X
X
X
Z
Z
Z
X
X
X
X
X
Z
Z
155 (µF) 1.5  
225  
335  
475  
106  
226  
2.2  
3.3  
4.7  
10  
Z
Z
Z
Z
X
X
Z
Z
Z
22  
Z
16V 25V 50V 16V 25V 50V 100V 200V 16V 25V 50V 100V 200V 16V 25V 50V 100V 200V 500V 16V 25V 50V 100V 50V 100V 25V 50V  
0402  
0603  
0805  
1206  
1210  
1812  
2220  
= Under Development  
Letter  
Max.  
Thickness (0.013)  
A
0.33  
C
0.56  
(0.022)  
E
0.71  
(0.028)  
G
0.90  
(0.035)  
J
0.94  
(0.037)  
K
M
1.27  
(0.050)  
N
1.40  
(0.055)  
P
1.52  
(0.060)  
Q
1.78  
(0.070)  
X
2.29  
(0.090)  
Y
2.54  
(0.100)  
Z
2.79  
(0.110)  
1.02  
(0.040)  
PAPER  
EMBOSSED  
41  
Automotive MLCC-X8R  
Capacitance Range  
SIZE  
0603  
0805  
1206  
WVDC  
270  
330  
470  
680  
25V  
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
50V  
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
25V  
50V  
25V  
50V  
271  
331  
471  
681  
102  
152  
182  
222  
272  
332  
392  
472  
562  
682  
822  
103  
123  
153  
183  
223  
273  
333  
393  
473  
563  
683  
823  
104  
124  
154  
184  
224  
274  
334  
394  
474  
684  
824  
105  
Cap  
(pF)  
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
N
N
N
N
N
N
N
N
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
N
N
N
N
N
N
1000  
1500  
1800  
2200  
2700  
3300  
3900  
4700  
5600  
6800  
8200  
0.01  
0.012  
0.015  
0.018  
0.022  
0.027  
0.033  
0.039  
0.047  
0.056  
0.068  
0.082  
0.1  
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
Cap  
(µF)  
J
J
J
J
J
J
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
0.12  
0.15  
0.18  
0.22  
0.27  
0.33  
0.39  
0.47  
0.68  
0.82  
1
WVDC  
25V  
50V  
25V  
50V  
25V  
50V  
SIZE  
0603  
0805  
1206  
Letter  
Max.  
Thickness (0.013)  
A
0.33  
C
E
0.71  
(0.028)  
G
0.90  
(0.035)  
J
0.94  
(0.037)  
K
1.02  
(0.040)  
M
1.27  
(0.050)  
N
1.40  
(0.055)  
P
1.52  
(0.060)  
Q
1.78  
(0.070)  
X
2.29  
(0.090)  
Y
2.54  
(0.100)  
Z
2.79  
(0.110)  
0.56  
(0.022)  
PAPER  
EMBOSSED  
= AEC-Q200 Qualified  
42  
APS Series  
APS for COTS+ Applications  
GENERAL DESCRIPTION  
As part of our continuing support to high reliability customers, AVX  
has launched an Automotive Plus Series of parts (APS) qualified and manufactured  
in accordance with automotive AEC-Q200 standard. Each production batch is qual-  
ity tested to an enhanced requirement and shipped with a certificate of conformance.  
On a quarterly basis a reliability package is issued to all APS customers.  
A detailed qualification package is available on request and contains results on a  
range of part numbers including:  
• X7R dielectric components containing BME electrode and copper terminations  
with a Ni/Sn plated overcoat.  
• X7R dielectric components BME electrode and soft terminations with a Ni/Sn  
plated overcoat (FLEXITERM®).  
• X7R for Hybrid applications.  
• NP0 dielectric components containing Pd/Ag electrode and silver termination with  
a Ni/Sn plated overcoat.  
We are also able to support customers who require an AEC-Q200 grade component  
finished with Tin/Lead.  
HOW TO ORDER  
AP03  
5
A
104  
K
Q
2
A
T
Size  
Voltage Dielectric  
Capacitance  
Code (In pF)  
2 Significant Digits +  
Number of Zeros  
e.g. 10µF = 106  
Capacitance Failure Rate  
Packaging  
2 = 7" Reel  
4 = 13" Reel  
Special Code  
A = Std. Product  
Terminations  
T = Plated Ni and Sn**  
Z = FLEXITERM®**  
U = Conductive Epoxy**  
B = 5ꢀ min lead  
Tolerance  
J = 5ꢀ  
AP03=0603  
AP05=0805  
AP06=1206  
16V = Y  
25V = 3  
50V = 5  
NP0 = A  
X7R = C  
Q = APS  
K = 10ꢀ  
M = 20ꢀ  
AP10=1210 100V = 1  
AP12=1812 200V = 2  
500V = 7  
X = FLEXITERM® with  
5ꢀ min lead  
Z, U, X for X7R only  
**RoHS compliant  
NOTE: Contact factory for availability of Termination and Tolerance Options for Specific Part Numbers.  
43  
NP0 Automotive Plus Series / APS  
Capacitance Range  
0603  
0805  
1206  
100V  
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
M
M
M
Q
Q
1210  
1812  
25V  
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
50V  
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
100V  
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
25V  
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
50V  
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
100V  
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
25V  
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
50V  
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
M
M
M
M
M
200V  
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
500V  
25V  
50V  
100V  
200V  
50V  
100V  
100  
120  
150  
180  
220  
270  
330  
390  
470  
510  
560  
680  
820  
101  
121  
151  
181  
221  
271  
331  
391  
471  
561  
681  
821  
102  
122  
152  
182  
222  
272  
332  
392  
472  
103  
10pF  
12  
15  
18  
22  
27  
33  
39  
47  
51  
56  
68  
82  
100  
120  
150  
180  
220  
270  
330  
390  
470  
560  
680  
820  
1000  
1200  
1500  
1800  
2200  
2700  
3300  
3900  
4700  
10nF  
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
M
M
M
M
M
P
M
M
M
M
K
K
K
K
K
K
P
P
25V  
50V  
100V  
25V  
50V  
100V  
25V  
50V  
100V  
200V  
500V  
25V  
50V  
100V  
200V  
50V  
100V  
0603  
0805  
1206  
1210  
1812  
Letter  
Max.  
Thickness (0.013)  
A
0.33  
C
0.56  
(0.022)  
E
0.71  
(0.028)  
G
0.90  
(0.035)  
J
0.94  
(0.037)  
K
1.02  
(0.040)  
M
1.27  
(0.050)  
N
1.40  
(0.055)  
P
1.52  
(0.060)  
Q
1.78  
(0.070)  
X
2.29  
(0.090)  
Y
Z
2.79  
(0.110)  
2.54  
(0.100)  
PAPER  
EMBOSSED  
AEC-Q200 qualified  
TS 16949, ISO 9001 certified  
44  
X7R Automotive Plus Series / APS  
Capacitance Range  
0603  
0805  
1206  
1210  
1812  
2220  
16V 25V 50V 100V 200V 16V 25V 50V 100V 200V 16V 25V 50V 100V 200V 500V 16V 25V 50V 100V 50V 100V 25V 50V  
102 Cap  
182 (nF) 1.8  
1
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
M
M
M
Q
Q
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
M
M
M
P
P
Q
Q
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
M
P
P
P
P
P
X
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
M
P
P
P
Q
Q
Z
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
M
P
P
Q
Q
Z
K
K
K
K
K
K
K
K
K
K
K
K
K
M
M
M
M
P
P
P
Q
Q
X
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
M
X
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
M
X
222  
332  
472  
103  
123  
153  
183  
223  
273  
333  
473  
563  
683  
823  
104  
124  
154  
224  
334  
474  
684  
105 Cap  
2.2  
3.3  
4.7  
10  
12  
15  
18  
22  
27  
33  
47  
56  
68  
82  
100  
120  
150  
220  
330  
470  
680  
1
J
M
M
M
M
M
M
M
M
M
M
M
J
J
J
M
M
M
M
M
M
M
Q
Q
Q
Q
Q
M
M
M
M
M
M
J
J
J
J
M
M
N
N
N
N
N
N
N
N
N
N
M
M
M
Q
Q
Q
Q
X
X
X
X
Z
Z
Z
X
X
X
X
X
Z
Z
155 (µF) 1.5  
225  
335  
475  
106  
226  
2.2  
3.3  
4.7  
10  
Z
Z
Z
Z
X
X
Z
Z
Z
22  
Z
16V 25V 50V 100V 200V 16V 25V 50V 100V 200V 16V 25V 50V 100V 200V 500V 16V 25V 50V 100V 50V 100V 25V 50V  
0603  
0805  
1206  
1210  
1812  
2220  
= Under Development  
Letter  
Max.  
Thickness (0.013)  
A
0.33  
C
0.56  
(0.022)  
E
0.71  
(0.028)  
G
0.90  
(0.035)  
J
0.94  
(0.037)  
K
1.02  
(0.040)  
M
1.27  
(0.050)  
N
1.40  
(0.055)  
P
1.52  
(0.060)  
Q
1.78  
(0.070)  
X
2.29  
(0.090)  
Y
2.54  
(0.100)  
Z
2.79  
(0.110)  
PAPER  
EMBOSSED  
AEC-Q200 qualified  
TS 16949, ISO 9001 certified  
45  
MLCC with FLEXITERM®  
General Specifications  
GENERAL DESCRIPTION  
With increased requirements from the automotive industry for additional  
component robustness, AVX recognized the need to produce a MLCC with  
enhanced mechanical strength. It was noted that many components may be  
subject to severe flexing and vibration when used in various under the hood  
automotive and other harsh environment applications.  
To satisfy the requirement for enhanced mechanical strength, AVX had to  
find a way of ensuring electrical integrity is maintained whilst external forces  
are being applied to the component. It was found that the structure of the  
termination needed to be flexible and after much research and development,  
AVX launched FLEXITERM®. FLEXITERM® is designed to enhance the  
mechanical flexure and temperature cycling performance of a standard  
ceramic capacitor with an X7R dielectric. The industry standard for  
flexure is 2mm minimum. Using FLEXITERM®, AVX provides up to  
5mm of flexure without internal cracks. Beyond 5mm, the capacitor  
will generally fail “open”.  
As well as for automotive applications FLEXITERM® will provide Design  
Engineers with a satisfactory solution when designing PCB’s which may be  
subject to high levels of board flexure.  
APPLICATIONS  
High Flexure Stress Circuit Boards  
• e.g. Depanelization: Components near edges  
of board.  
PRODUCT ADVANTAGES  
• High mechanical performance able to withstand, 5mm bend test  
guaranteed.  
Increased temperature cycling performance, 3000 cycles and beyond.  
Flexible termination system.  
Reduction in circuit board flex failures.  
Variable Temperature Applications  
• Soft termination offers improved reliability per-  
formance in applications where there is tem-  
perature variation.  
• e.g. All kind of engine sensors: Direct  
connection to battery rail.  
Automotive Applications  
Base metal electrode system.  
Automotive or commercial grade products available.  
• Improved reliability.  
• Excellent mechanical performance and  
thermo mechanical performance.  
HOW TO ORDER  
0805  
5
C
104  
K
2
A
A
Z
Style  
0603  
0805  
1206  
1210  
1812  
2220  
Voltage  
6 = 6.3V  
Z = 10V  
Y = 16V  
3 = 25V  
5 = 50V  
1 = 100V  
2 = 200V  
Dielectric  
C = X7R  
F = X8R  
Capacitance  
Code (In pF)  
Capacitance  
Tolerance  
J = 5ꢀ*  
K = 10ꢀ  
M = 20ꢀ  
Packaging  
2 = 7" reel  
4 = 13" reel  
Special Code  
A = Std. Product  
Failure  
Rate  
A=Commercial  
4 = Automotive  
Terminations  
Z = FLEXITERM®  
2 Sig Digits +  
For FLEXITERM®  
with Tin/Lead  
termination see  
AVX LD Series  
Number of Zeros  
e.g., 104 = 100nF  
*1µF only  
NOTE: Contact factory for availability of Tolerance Options for Specific Part Numbers.  
46  
MLCC with FLEXITERM®  
Specifications and Test Methods  
BOARD BEND TEST PROCEDURE  
PERFORMANCE TESTING  
According to AEC-Q200  
AEC-Q200 Qualification:  
• Created by the Automotive Electronics  
Council  
Test Procedure as per AEC-Q200:  
Sample size:  
Span: 90mm  
20 components  
LOADING  
KNIFE  
Minimum deflection spec: 2 mm  
• Specification defining stress  
test qualification for  
passive components  
• Components soldered onto FR4 PCB (Figure 1)  
• Board connected electrically to the test equipment  
(Figure 2)  
MOUNTING  
ASSEMBLY  
DIGITAL  
CALIPER  
Testing:  
BEND TESTPLATE  
Key tests used to compare  
soft termination to  
AEC-Q200 qualification:  
• Bend Test  
CONNECTOR  
CONTROL  
PANEL  
CONTROL PANEL  
Temperature Cycle Test  
Fig 2 - Board Bend test  
equipment  
Fig 1 - PCB layout with electrical connections  
BOARD BEND TEST RESULTS  
AEC-Q200 Vrs AVX FLEXITERM® Bend Test  
0603  
0805  
12  
10  
8
6
4
2
12  
10  
8
6
4
2
AVX ENHANCED SOFT  
TERMINATION BEND TEST  
PROCEDURE  
0
0
NPO  
X7R  
X7R soft term  
NPO  
X7R  
X7R soft term  
Bend Test  
The capacitor is soldered to the printed circuit  
board as shown and is bent up to 10mm at  
1mm per second:  
1210  
1206  
12  
10  
8
12  
10  
8
6
4
2
0
6
4
2
0
Max. = 10mm  
NPO  
X7R  
X7R soft term  
NPO  
X7R  
X7R soft term  
TABLE SUMMARY  
90mm  
Typical bend test results are shown below:  
Style  
0603  
0805  
1206  
Conventional Termination  
FLEXITERM®  
ꢃ5mm  
ꢃ2mm  
ꢃ2mm  
ꢃ2mm  
• The board is placed on 2 supports 90mm  
apart (capacitor side down)  
• The row of capacitors is aligned with the  
load stressing knife  
ꢃ5mm  
ꢃ5mm  
TEMPERATURE CYCLE TEST PROCEDURE  
Test Procedure as per AEC-Q200:  
Max. = 10mm  
The test is conducted to determine the resistance of the  
component when it is exposed to extremes of alternating  
high and low temperatures.  
• Sample lot size quantity 77 pieces  
• TC chamber cycle from -55ºC to +125ºC for 1000 cycles  
• Interim electrical measurements at 250, 500, 1000 cycles  
• Measure parameter capacitance dissipation factor,  
insulation resistance  
• The load is applied and the deflection where  
the part starts to crack is recorded (Note:  
Equipment detects the start of the crack  
using a highly sensitive current detection  
circuit)  
Test Temperature Profile (1 cycle)  
+1250  
+250  
C
C
• The maximum deflection capability is 10mm  
-550  
C
1 hour 12mins  
47  
MLCC with FLEXITERM®  
Specifications and Test Methods  
BEYOND 1000 CYCLES: TEMPERATURE CYCLE TEST RESULTS  
0603  
0805  
10  
8
10  
8
6
6
4
4
2
2
0
0
0
500 1000 1500 2000 2500 3000  
0
500 1000 1500 2000 2500 3000  
1206  
1210  
10  
8
10  
8
6
6
4
4
2
2
0
0
0
500 1000 1500 2000 2500 3000  
0
500 1000 1500 2000 2500 3000  
AEC-Q200 specification states  
1000 cycles compared to AVX  
3000 temperature cycles.  
Soft Term - No Defects up to 3000 cycles  
FLEXITERM® TEST SUMMARY  
• Qualified to AEC-Q200 test/specification with the exception • Board bend test improvement by a factor of 2 to 4 times.  
of using AVX 3000 temperature cycles (up to +150ꢁC bend  
Temperature Cycling:  
test guaranteed greater than 5mm).  
– 0ꢀ Failure up to 3000 cycles  
• FLEXITERM® provides improved performance compared to  
– No ESR change up to 3000 cycles  
standard termination systems.  
WITHOUT SOFT TERMINATION  
WITH SOFT TERMINATION  
Major fear is of latent board flex failures.  
Far superior mechanical performance.  
Generally open failure mode beyond  
5mm flexure.  
48  
MLCC with FLEXITERM®  
X8R Dielectric Capacitance Range  
SIZE  
0603  
0805  
1206  
WVDC  
270  
330  
470  
680  
25V  
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
50V  
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
25V  
50V  
25V  
50V  
271  
331  
471  
681  
102  
152  
182  
222  
272  
332  
392  
472  
562  
682  
822  
103  
123  
153  
183  
223  
273  
333  
393  
473  
563  
683  
823  
104  
124  
154  
184  
224  
274  
334  
394  
474  
684  
824  
105  
Cap  
(pF)  
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
N
N
N
N
N
N
N
N
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
N
N
N
N
N
N
1000  
1500  
1800  
2200  
2700  
3300  
3900  
4700  
5600  
6800  
8200  
0.01  
0.012  
0.015  
0.018  
0.022  
0.027  
0.033  
0.039  
0.047  
0.056  
0.068  
0.082  
0.1  
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
Cap  
(µF)  
J
J
J
J
J
J
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
0.12  
0.15  
0.18  
0.22  
0.27  
0.33  
0.39  
0.47  
0.68  
0.82  
1
WVDC  
25V  
50V  
25V  
50V  
25V  
50V  
SIZE  
0603  
0805  
1206  
Letter  
Max.  
Thickness (0.013)  
A
0.33  
C
E
0.71  
(0.028)  
G
0.90  
(0.035)  
J
0.94  
(0.037)  
K
1.02  
(0.040)  
M
1.27  
(0.050)  
N
1.40  
(0.055)  
P
1.52  
(0.060)  
Q
1.78  
(0.070)  
X
2.29  
(0.090)  
Y
2.54  
(0.100)  
Z
2.79  
(0.110)  
0.56  
(0.022)  
PAPER  
EMBOSSED  
= AEC-Q200 Qualified  
49  
MLCC with FLEXITERM®  
X7R Dielectric Capacitance Range  
0603  
0805  
1206  
1210  
1812  
2220  
16V  
25V  
50V 100V 200V 10V  
16V  
25V  
50V  
100V 200V 16V  
25V  
50V  
100V 200V 16V  
25V  
50V  
100V 16V  
25V  
50V 100V 25V  
50V 100V  
101  
121  
151  
181  
221  
271  
331  
391  
471  
561  
681  
821  
102  
122  
152  
182  
222  
272  
332  
392  
472  
562  
682  
822  
103  
123  
153  
183  
223  
273  
333  
393  
473  
563  
683  
823  
104  
124  
154  
184  
224  
274  
334  
394  
474  
564  
684  
824  
105  
155  
185  
225  
335  
475  
106  
226  
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
N
N
N
N
N
N
N
N
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
P
P
P
P
P
P
P
P
Q
Q
Q
Q
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
M
M
M
M
M
M
M
M
N
N
N
N
N
N
N
N
N
N
N
N
K
K
K
K
K
M
M
M
P
Q
Q
Q
Q
Q
Q
Q
Q
Q
X
J
J
M
M
M
M
P
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
K
K
K
K
K
K
M
M
P
P
P
P
P
P
P
P
P
Z
K
K
K
K
K
K
M
M
P
P
P
P
Q
X
Z
Z
Z
Z
Z
Z
Z
K
K
K
K
K
K
M
M
P
P
P
P
Q
X
Z
Z
Z
Z
Z
Z
Z
K
K
K
K
K
K
K
M
M
M
X
K
K
K
K
K
K
K
M
M
M
X
K
K
K
K
K
K
K
M
M
M
X
X
X
X
X
X
Z
Z
Z
K
K
K
K
K
M
M
X
X
X
X
X
Z
Z
Z
Z
Z
Z
Z
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
J
J
M
M
M
N
N
N
N
N
N
N
N
M
M
M
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
M
M
M
M
M
M
Q
Q
Q
Q
Q
Q
Q
M
M
M
M
M
M
Q
Q
Q
X
X
X
X
X
X
X
X
Z
Z
Z
Z
X
X
X
X
X
X
X
X
Z
Z
Z
Z
X
X
Z
X
Z
Z
Z
Z
Z
Z
16V  
25V  
50V 100V 200V 10V  
16V  
25V  
50V  
100V 200V 16V  
25V  
50V  
100V 200V 16V  
25V  
50V  
100V 16V  
25V  
50V 100V 25V  
50V 100V  
0603  
0805  
1206  
1210  
1812  
2220  
Letter  
Max.  
Thickness (0.013)  
A
0.33  
C
0.56  
(0.022)  
E
0.71  
(0.028)  
G
0.90  
(0.035)  
J
K
1.02  
(0.040)  
M
1.27  
(0.050)  
N
1.40  
(0.055)  
P
1.52  
(0.060)  
Q
1.78  
(0.070)  
X
Y
2.54  
(0.100)  
Z
2.79  
(0.110)  
0.94  
(0.037)  
2.29  
(0.090)  
PAPER  
EMBOSSED  
50  
FLEXISAFE MLC Chips  
For Ultra Safety Critical Applications  
AVX have developed a range of components specifically for safety  
critical applications.  
Utilizing the award-winning FLEXITERM™ layer in conjunction with  
the cascade design previously used for high voltage MLCCs, a  
range of ceramic capacitors is now available for customers who  
require components designed with an industry leading set of  
safety features.  
The FLEXITERM™ layer protects the component from any  
damage to the ceramic resulting from mechanical stress during  
PCB assembly or use with end customers. Board flexure type  
mechanical damage accounts for the majority of MLCC failures.  
The addition of the cascade structure protects the component  
from low insulation resistance failure resulting from other common  
causes for failure; thermal stress damage, repetitive strike ESD  
damage and placement damage. With the inclusion of the  
cascade design structure to complement the FLEXITERM™ layer,  
the FLEXISAFE range of capacitors has unbeatable safety  
features.  
HOW TO ORDER  
C
104  
K
Q
Z
2
A
FS03  
5
Dielectric  
X7R = C  
Capacitance  
Code (In pF)  
2 Sig. Digits +  
Number of  
Zeros  
e.g. 10µF =106  
Capacitance  
Tolerance  
J = 5ꢀ  
K = 10ꢀ  
M = 20ꢀ  
Failure  
Rate  
A = Commercial  
4 = Automotive  
Q = APS  
Terminations  
Z = FLEXITERMTM  
X = FLEXITERMTM  
with 5ꢀ  
Packaging  
2 = 7" Reel  
4 = 13" Reel  
Special  
Code  
A = Std. Product  
Size  
Voltage  
16V = Y  
25V = 3  
50V = 5  
100V = 1  
FS03 = 0603  
FS05 = 0805  
FS06 = 1206  
FS10 = 1210  
min lead  
FLEXISAFE X7R RANGE  
Capacitance  
0603  
25  
0805  
25  
1206  
25  
1210  
25  
Code  
102  
182  
222  
332  
472  
103  
123  
153  
183  
223  
273  
333  
473  
563  
683  
823  
104  
124  
154  
224  
334  
474  
nF  
1
16  
50  
100  
16  
50  
16  
50  
16  
50  
1.8  
2.2  
3.3  
4.7  
10  
12  
15  
18  
22  
27  
33  
47  
56  
68  
82  
100  
120  
150  
220  
330  
470  
Qualified  
In Qualification  
51  
Capacitor Array  
Capacitor Array (IPC)  
BENEFITS OF USING CAPACITOR  
ARRAYS  
AVX capacitor arrays offer designers the opportunity to  
lower placement costs, increase assembly line output  
through lower component count per board and to reduce  
real estate requirements.  
For high volume users of cap arrays using the very latest  
placement equipment capable of placing 10 components per  
second, the increase in throughput can be very significant and  
can have the overall effect of reducing the number of place-  
ment machines required to mount components:  
Reduced Costs  
Placement costs are greatly reduced by effectively placing  
one device instead of four or two. This results in increased  
throughput and translates into savings on machine time.  
Inventory levels are lowered and further savings are made  
on solder materials, etc.  
If 120 million 2-element arrays or 40 million 4-element arrays  
were placed in a year, the requirement for placement  
equipment would be reduced by one machine.  
During a 20Hr operational day a machine places 720K  
components. Over a working year of 167 days the machine  
can place approximately 120 million. If 2-element arrays are  
mounted instead of discrete components, then the number  
of placements is reduced by a factor of two and in the  
scenario where 120 million 2-element arrays are placed there  
is a saving of one pick and place machine.  
Space Saving  
Space savings can be quite dramatic when compared to  
the use of discrete chip capacitors. As an example, the  
0508 4-element array offers a space reduction of ꢃ40ꢀ vs.  
4 x 0402 discrete capacitors and of ꢃ70ꢀ vs. 4 x 0603  
discrete capacitors. (This calculation is dependent on the  
spacing of the discrete components.)  
Smaller volume users can also benefit from replacing  
discrete components with arrays. The total number of place-  
ments is reduced thus creating spare capacity on placement  
machines. This in turn generates the opportunity to increase  
overall production output without further investment in new  
equipment.  
Increased Throughput  
Assuming that there are 220 passive components placed in a  
mobile phone:  
A reduction in the passive count to 200 (by replacing  
discrete components with arrays) results in an increase in  
throughput of approximately 9ꢀ.  
A reduction of 40 placements increases throughput by 18ꢀ.  
W2A (0508) Capacitor Arrays  
4 pcs 0402 Capacitors  
=
1 pc 0508 Array  
1.88  
(0.074)  
1.4  
1.0  
(0.055) (0.039)  
5.0 (0.197)  
AREA = 7.0mm (0.276 in )  
2.1 (0.083)  
AREA = 3.95mm (0.156 in )  
2
2
2
2
The 0508 4-element capacitor array gives a PCB space saving of over 40ꢀ  
vs four 0402 discretes and over 70ꢀ vs four 0603 discrete capacitors.  
W3A (0612) Capacitor Arrays  
4 pcs 0603 Capacitors  
=
1 pc 0612 Array  
2.0  
(0.079)  
2.3  
(0.091)  
1.5  
(0.059)  
6.0 (0.236)  
AREA = 13.8mm (0.543 in )  
3.2 (0.126)  
AREA = 6.4mm (0.252 in )  
2
2
2
2
The 0612 4-element capacitor array gives a PCB space saving of over 50ꢀ  
vs four 0603 discretes and over 70ꢀ vs four 0805 discrete capacitors.  
52  
Capacitor Array  
Capacitor Array (IPC)  
GENERAL DESCRIPTION  
AVX is the market leader in the development and manufacture of  
capacitor arrays. The smallest array option available from AVX, the  
0405 2-element device, has been an enormous success in the  
Telecommunications market. The array family of products also  
includes the 0612 4-element device as well as 0508 2-element and  
4-element series, all of which have received widespread acceptance  
in the marketplace.  
0405 - 2 Element  
0508 - 4 Element  
AVX capacitor arrays are available in X5R, X7R and NP0 (C0G)  
ceramic dielectrics to cover a broad range of capacitance values.  
Voltage ratings from 6.3 Volts up to 100 Volts are offered. AVX  
also now offers a range of automotive capacitor arrays qualified to  
AEC-Q200 (see separate table).  
0508 - 2 Element  
0612 - 4 Element  
Key markets for capacitor arrays are Mobile and Cordless Phones,  
Digital Set Top Boxes, Computer Motherboards and Peripherals  
as well as Automotive applications, RF Modems, Networking  
Products, etc.  
AVX Capacitor Array - W2A41A***K  
S21 Magnitude  
0
-5  
-10  
-15  
-20  
-25  
5pF  
10pF  
22pF  
39pF  
15pF  
33pF  
68pF  
-30  
-35  
-40  
0.01  
0.1  
1
10  
Frequency (GHz)  
HOW TO ORDER  
W
2
A
4
3
C
103  
M
2A  
A
T
Style  
W = RoHS  
L = SnPb  
Case Array Number Voltage Dielectric Capacitance Capacitance  
Packaging &  
Quantity  
Code  
Failure  
Rate  
A = Commercial  
4 = Automotive  
Termination  
Code  
Size  
of Caps  
Code  
2 Sig Digits +  
Number of  
Zeros  
Tolerance  
J = 5ꢀ  
6 = 6V  
A = NP0  
C = X7R  
D = X5R  
T = Plated Ni  
1 = 0405  
2 = 0508  
3 = 0612  
5 = 0306  
Z = 10V  
Y = 16V  
3 = 25V  
5 = 50V  
1 = 100V  
and Sn**  
2A = 7" Reel  
(4000)  
K = 10ꢀ  
M = 20ꢀ  
Z = FLEXITERM®**  
B = 5ꢀ min lead  
X = FLEXITERM® with  
5ꢀ min lead  
4A = 13" Reel  
(10000)  
2F = 7" Reel  
(1000)  
**RoHS compliant  
NOTE: Contact factory for availability of Termination and Tolerance Options for Specific Part Numbers.  
53  
Capacitor Array  
Capacitance Range – NP0/C0G  
SIZE  
# Elements  
Soldering  
0405  
2
Reflow Only  
All Paper  
0508  
2
Reflow/Wave  
All Paper  
0508  
4
Reflow/Wave  
Paper/Embossed  
0612  
4
Reflow/Wave  
Paper/Embossed  
Packaging  
mm  
(in.)  
1.00 0.15  
(0.039 0.006)  
1.30 0.15  
(0.051 0.006)  
1.30 0.15  
(0.051 0.006)  
1.60 0.150  
(0.063 0.006)  
Length  
mm  
(in.)  
1.37 0.15  
(0.054 0.006)  
2.10 0.15  
(0.083 0.006)  
2.10 0.15  
(0.083 0.006)  
3.20 0.20  
(0.126 0.008)  
Width  
Max.  
Thickness  
mm  
(in.)  
0.66  
(0.026)  
0.94  
(0.037)  
0.94  
(0.037)  
1.35  
(0.053)  
WVDC  
Cap 1.0  
16  
25  
50  
16  
25  
50  
100  
16  
25  
50  
100  
16  
25  
50  
100  
1R0  
1R2  
1R5  
(pF)  
1.2  
1.5  
1R8  
2R2  
2R7  
1.8  
2.2  
2.7  
3R3  
3R9  
4R7  
3.3  
3.9  
4.7  
5R6  
6R8  
8R2  
5.6  
6.8  
8.2  
100  
120  
150  
10  
12  
15  
180  
220  
270  
18  
22  
27  
330  
390  
470  
33  
39  
47  
560  
680  
820  
56  
68  
82  
101  
121  
151  
100  
120  
150  
181  
221  
271  
180  
220  
270  
331  
391  
471  
330  
390  
470  
561  
681  
821  
560  
680  
820  
102  
122  
152  
1000  
1200  
1500  
182  
222  
272  
1800  
2200  
2700  
332  
392  
472  
3300  
3900  
4700  
562  
682  
822  
5600  
6800  
8200  
54  
Capacitor Array  
Capacitance Range – X7R/X5R  
SIZE  
# Elements  
Soldering  
Packaging  
Length  
0306 0405050805080612  
4
2
2
4
4
Reflow Only  
All Paper  
Reflow Only  
All Paper  
Reflow/Wave  
All Paper  
Reflow/Wave  
Paper/Embossed  
Reflow/Wave  
Paper/Embossed  
mm  
(in.)  
1.60 0.15  
(0.063 0.006)  
1.00 0.15  
(0.039 0.006)  
1.30 0.15  
(0.051 0.006)  
1.30 0.15  
(0.051 0.006)  
1.60 0.150  
(0.063 0.006)  
mm  
(in.)  
0.81 0.15  
(0.032 0.006)  
1.37 0.15  
(0.054 0.006)  
2.10 0.15  
(0.083 0.006)  
2.10 0.15  
(0.083 0.006)  
3.20 0.20  
(0.126 0.008)  
Width  
Max.  
Thickness  
mm  
(in.)  
0.50  
(0.020)  
0.66  
(0.026)  
0.94  
(0.037)  
0.94  
(0.037)  
1.35  
(0.053)  
WVDC  
6
10  
16 25  
6
10  
16  
25  
50  
6
10  
16  
25  
50  
100  
6
10  
16  
25  
50  
100  
6
10  
16  
25  
50  
100  
101 Cap  
121 (µF)  
151  
100  
120  
150  
181  
221  
271  
180  
220  
270  
331  
391  
471  
330  
390  
470  
561  
681  
821  
560  
680  
820  
102  
122  
152  
1000  
1200  
1500  
182  
222  
272  
1800  
2200  
2700  
332  
392  
472  
3300  
3900  
4700  
562  
682  
822  
5600  
6800  
8200  
103 Cap  
123 (µF)  
153  
0.010  
0.012  
0.015  
183  
223  
273  
0.018  
0.022  
0.027  
333  
393  
473  
0.033  
0.039  
0.047  
563  
683  
823  
0.056  
0.068  
0.082  
104  
124  
154  
0.10  
0.12  
0.15  
184  
224  
274  
0.18  
0.22  
0.27  
334  
474  
564  
0.33  
0.47  
0.56  
684  
824  
105  
0.68  
0.82  
1.0  
125  
155  
185  
1.2  
1.5  
1.8  
225  
335  
475  
2.2  
3.3  
4.7  
106  
226  
476  
107  
10  
22  
47  
100  
= Currently available X7R  
= Currently available X5R  
= Under development X7R, contact factory for advance samples  
= Under development X5R, contact factory for advance samples  
55  
Automotive Capacitor Array (IPC)  
As the market leader in the development and manufacture of capacitor  
arrays AVX is pleased to offer a range of AEC-Q200 qualified arrays to  
compliment our product offering to the Automotive industry. Both the  
AVX 0612 and 0508 4-element capacitor array styles are qualified to the  
AEC-Q200 automotive specifications.  
AEC-Q200 is the Automotive Industry qualification standard and a  
detailed qualification package is available on request.  
0508 - 4 Element  
All AVX automotive capacitor array production facilities are certified to  
ISO/TS 16949:2002.  
0612 - 4 Element  
HOW TO ORDER  
Y
C
104  
K
4
T
3
A
4
2A  
W
Voltage Dielectric Capacitance Capacitance Failure Rate  
Case  
Size  
1 = 0405  
2 = 0508  
3 = 0612  
Array  
Packaging  
& Quantity  
Code  
Style  
W = RoHS  
L = SnPb  
Number  
of Caps  
Terminations  
T = Plated Ni and Sn**  
Z = FLEXITERM®**  
B = 5ꢀ min lead  
Z = 10V  
Y = 16V  
3 = 25V  
5 = 50V  
1 = 100V  
A = NP0  
C = X7R  
F = X8R  
Code (In pF)  
Significant  
Digits +  
Tolerance  
*J = 5ꢀ  
4 = Automotive  
2A = 7" Reel  
(4000)  
*K = 10ꢀ  
M = 20ꢀ  
X = FLEXITERM® with  
5ꢀ min lead  
Number of  
Zeros  
4A = 13" Reel  
(10000)  
2F = 7" Reel  
(1000)  
e.g. 10µF=106  
**RoHS compliant  
*Contact factory for availability by part number for K = 10ꢀ and J = 5ꢀ tolerance.  
NP0/C0G  
X7R  
X8R  
SIZE  
No. of Elements  
0405 0508  
0508  
4
0612  
4
SIZE  
No. of Elements  
0508  
2
0508  
4
0612  
4
0405  
2
2
2
WVDC  
50  
50  
16  
25  
50  
100  
16  
25  
50  
100  
WVDC  
10  
16  
25  
50  
100  
16  
25  
50  
100  
10  
16  
25  
50  
100  
16  
1R0  
1R2  
1R5  
Cap 1.0  
(pF) 1.2  
1.5  
101  
121  
151  
Cap 100  
(pF) 120  
150  
1R8  
2R2  
2R7  
1.8  
2.2  
2.7  
181  
221  
271  
180  
220  
270  
3R3  
3R9  
4R7  
3.3  
3.9  
4.7  
331  
391  
471  
330  
390  
470  
5R6  
6R8  
8R2  
5.6  
6.8  
8.2  
561  
681  
821  
560  
680  
820  
100  
120  
150  
10  
12  
15  
102  
122  
152  
1000  
1200  
1500  
180  
220  
270  
18  
22  
27  
182  
222  
272  
1800  
2200  
2700  
330  
390  
470  
33  
39  
47  
332  
392  
472  
3300  
3900  
4700  
560  
680  
820  
56  
68  
82  
562  
682  
822  
5600  
6800  
8200  
101  
121  
151  
100  
120  
150  
103 Cap 0.010  
123  
153  
(µF) 0.012  
0.015  
181  
221  
271  
180  
220  
270  
183  
223  
273  
0.018  
0.022  
0.027  
331  
391  
471  
330  
390  
470  
333  
393  
473  
0.033  
0.039  
0.047  
561  
681  
821  
560  
680  
820  
563  
683  
823  
0.056  
0.068  
0.082  
102  
122  
152  
1000  
1200  
1500  
104  
124  
154  
0.10  
0.12  
0.15  
182  
222  
272  
332  
392  
472  
562  
682  
822  
1800  
2200  
2700  
3300  
3900  
4700  
5600  
6800  
8200  
224  
0.22  
= X7R  
= X8R  
= Under development  
= NPO/COG  
= Under development  
56  
Capacitor Array  
Multi-Value Capacitor Array (IPC)  
GENERAL DESCRIPTION  
A recent addition to the array product range is the Multi-  
Value Capacitor Array. These devices combine two different  
capacitance values in standard ‘Cap Array’ packages and  
are available with a maximum ratio between the two  
capacitance values of 100:1. The multi-value array is  
currently available in the 0405 and 0508 2-element styles  
and also in the 0612 4-element style.  
ADVANTAGES OF THE MULTI-VALUE  
CAPACITOR ARRAYS  
Enhanced Performance Due to Reduced Parasitic  
Inductance  
When connected in parallel, not only do discrete capacitors  
of different values give the desired self-resonance, but an  
additional unwanted parallel resonance also results. This  
parallel resonance is induced between each capacitor’s self-  
resonant frequencies and produces a peak in impedance  
response. For decoupling and bypassing applications this  
peak will result in a frequency band of reduced decoupling  
and in filtering applications reduced attenuation.  
Whereas to date AVX capacitor arrays have been suited to  
applications where multiple capacitors of the same value are  
used, the multi-value array introduces a new flexibility to the  
range. The multi-value array can replace discrete capacitors  
of different values and can be used for broadband  
decoupling applications. The 0508 x 2 element multi-value  
array would be particularly recommended in this application.  
Another application is filtering the 900/1800 or 1900MHz  
noise in mobile phones. The 0405 2-element, low  
capacitance value NP0, (C0G) device would be suited to this  
application, in view of the space saving requirements of  
mobile phone manufacturers.  
The multi-value capacitor array, combining capacitors in one  
unit, virtually eliminates the problematic parallel resonance,  
by minimizing parasitic inductance between the capacitors,  
thus enhancing the broadband decoupling/filtering  
performance of the part.  
Reduced ESR  
An advantage of connecting two capacitors in parallel is a  
significant reduction in ESR. However, as stated above,  
using discrete components brings with it the unwanted side  
effect of parallel resonance. The multi-value cap array is  
an excellent alternative as not only does it perform the  
same function as parallel capacitors but also it reduces the  
uncertainty of the frequency response.  
HOW TO ORDER (Multi-Value Capacitor Array - IPC)  
W
2
A
2
Y
C
102M  
104M  
A
T
2A  
1st Value  
2nd Value  
Style  
Case  
Size  
1 = 0405  
2 = 0508  
3 = 0612  
Array Number  
of Caps  
Voltage  
Z = 10V  
Y = 16V  
3 = 25V  
5 = 50V  
1 = 100V  
Dielectric Capacitance Capacitance  
Failure  
Rate  
Terminations  
T = Plated Ni and Sn**  
Z = FLEXITERM®**  
B = 5ꢀ min lead  
Packaging &  
Quantity  
A = NP0  
C = X7R  
D = X5R  
Code (In pF)  
2 Sig. Digits +  
No. of Zeros  
Tolerance  
K = 10ꢀ  
M = 20ꢀ  
Code  
2A = 7" Reel (4000)  
X = FLEXITERM® with 4A = 13" Reel (10000)  
5ꢀ min lead  
2F = 7" Reel (1000)  
NOTE: Contact factory for availability of Termination and Tolerance Options for Specific Part Numbers.  
**RoHS compliant  
IMPEDANCE VS FREQUENCY  
Cap (Min/Max)  
1
0.8  
0.6  
0.4  
0.2  
0
NP0  
X5R/X7R  
221/104  
221/104  
101/103  
2xDiscrete Caps (0603)  
0612 4-element  
0508 2-element  
0405 2-element  
100/471  
100/471  
100/101  
• Max. ratio between the two cap values is 1:100.  
Multi Value Cap (0508)  
• The voltage of the higher capacitance value dictates  
the voltage of the multi-value part.  
• Only combinations of values within a specific dielectric  
range are possible.  
1
10  
100  
1000  
Frequency (MHz)  
57  
Capacitor Array  
PART & PAD LAYOUT DIMENSIONS  
millimeters (inches)  
0405 - 2 Element  
PAD LAYOUT  
0612 - 4 Element  
PAD LAYOUT  
W
W
E
E
X
X
P
D
D
S
S
S
P
S
A
A
B
B
T
T
C
C
C/L  
OF CHIP  
BW  
BW  
C/L OF CHIP  
C
L
C
L
BL  
L
BL  
L
0508 - 2 Element  
PAD LAYOUT  
0508 - 4 Element  
PAD LAYOUT  
E
E
W
P
D
W
D
S
S
X
X
A
S
S
P
A
B
B
C
T
T
C
BW  
C/L OF CHIP  
BW  
C
L
C/L  
OF CHIP  
C
L
BL  
L
BL  
L
PART DIMENSIONS  
PAD LAYOUT DIMENSIONS  
0405 - 2 Element  
0405 - 2 Element  
L
W
1.37 0.15  
T
BW  
0.36 0.10  
BL  
0.20 0.10  
P
0.64 REF  
S
A
B
C
D
E
1.00 0.15  
0.66 MAX  
0.32 0.10  
0.46  
0.74  
1.20  
0.30  
0.64  
(0.039 0.006) (0.054 0.006) (0.026 MAX) (0.014 0.004) (0.008 0.004  
)
)
)
(0.025 REF) (0.013 0.004)  
(0.018)  
(0.029)  
(0.047)  
(0.012)  
(0.025)  
0508 - 2 Element  
0508 - 2 Element  
L
W
2.10 0.15  
T
BW  
0.43 0.10  
BL  
0.33 0.08  
P
1.00 REF  
S
A
B
C
D
E
1.30 0.15  
0.94 MAX  
0.50 0.10  
0.68  
1.32  
2.00  
0.46  
1.00  
(0.051 0.006) (0.083 0.006) (0.037 MAX) (0.017 0.004) (0.013 0.003  
(0.039 REF) (0.020 0.004)  
(0.027)  
(0.052)  
(0.079)  
(0.018)  
(0.039)  
0508 - 4 Element  
0508 - 4 Element  
L
W
2.10 0.15  
T
BW  
0.25 0.06  
BL  
0.20 0.08  
P
0.50 REF  
X
S
A
B
C
D
E
1.30 0.15  
0.94 MAX  
0.75 0.10  
0.25 0.10  
0.56  
1.32  
1.88  
0.30  
0.50  
(0.051 0.006) (0.083 0.006) (0.037 MAX) (0.010 0.003) (0.008 0.003  
(0.020 REF) (0.030 0.004) (0.010 0.004)  
(0.022)  
(0.052)  
(0.074)  
(0.012)  
(0.020)  
0612 - 4 Element  
0612 - 4 Element  
A
B
C
D
E
L
W
T
BW  
BL  
P
X
S
+0.25  
0.89  
1.65  
2.54  
0.46  
0.76  
1.60 0.20  
3.20 0.20  
1.35 MAX  
0.41 0.10  
0.18  
0.76 REF  
1.14 0.10  
0.38 0.10  
-0.08  
(0.035)  
(0.065)  
(0.100)  
(0.018)  
(0.030)  
+0.010  
(0.063 0.008) (0.126 0.008) (0.053 MAX) (0.016 0.004) (0.007  
)
(0.030 REF) (0.045 0.004) (0.015 0.004)  
-0.003  
58  
Low Inductance Capacitors  
Introduction  
The signal integrity characteristics of a Power Delivery  
Network (PDN) are becoming critical aspects of board level  
and semiconductor package designs due to higher operating  
frequencies, larger power demands, and the ever shrinking  
lower and upper voltage limits around low operating voltages.  
These power system challenges are coming from mainstream  
designs with operating frequencies of 300MHz or greater,  
modest ICs with power demand of 15 watts or more, and  
operating voltages below 3 volts.  
capacitor, one resistor, and one inductor. The RLC values in  
this model are commonly referred to as equivalent series  
capacitance (ESC), equivalent series resistance (ESR), and  
equivalent series inductance (ESL).  
The ESL of a capacitor determines the speed of energy  
transfer to a load. The lower the ESL of a capacitor, the faster  
that energy can be transferred to a load. Historically, there  
has been a tradeoff between energy storage (capacitance)  
and inductance (speed of energy delivery). Low ESL devices  
typically have low capacitance. Likewise, higher capacitance  
devices typically have higher ESLs. This tradeoff between  
ESL (speed of energy delivery) and capacitance (energy  
storage) drives the PDN design topology that places the  
fastest low ESL capacitors as close to the load as possible.  
Low Inductance MLCCs are found on semiconductor  
packages and on boards as close as possible to the load.  
The classic PDN topology is comprised of a series of  
capacitor stages. Figure 1 is an example of this architecture  
with multiple capacitor stages.  
An ideal capacitor can transfer all its stored energy to a load  
instantly. A real capacitor has parasitics that prevent  
instantaneous transfer of a capacitor’s stored energy. The  
true nature of a capacitor can be modeled as an RLC  
equivalent circuit. For most simulation purposes, it is possible  
to model the characteristics of a real capacitor with one  
Slowest Capacitors  
Fastest Capacitors  
Semiconductor Product  
VR  
Bulk  
Board-Level  
Package-Level  
Die-Level  
Low Inductance Decoupling Capacitors  
Figure 1 Classic Power Delivery Network (PDN) Architecture  
LOW INDUCTANCE CHIP CAPACITORS  
INTERDIGITATED CAPACITORS  
The key physical characteristic determining equivalent series  
inductance (ESL) of a capacitor is the size of the current loop  
it creates. The smaller the current loop, the lower the ESL. A  
standard surface mount MLCC is rectangular in shape with  
electrical terminations on its shorter sides. A Low Inductance  
Chip Capacitor (LICC) sometimes referred to as Reverse  
Geometry Capacitor (RGC) has its terminations on the longer  
side of its rectangular shape.  
The size of a current loop has the greatest impact on the ESL  
characteristics of a surface mount capacitor. There is a  
secondary method for decreasing the ESL of a capacitor.  
This secondary method uses adjacent opposing current loops  
to reduce ESL. The InterDigitated Capacitor (IDC) utilizes  
both primary and secondary methods of reducing inductance.  
The IDC architecture shrinks the distance between  
terminations to minimize the current loop size, then further  
reduces inductance by creating adjacent opposing current  
loops.  
When the distance between terminations is reduced, the size  
of the current loop is reduced. Since the size of the current  
loop is the primary driver of inductance, an 0306 with a  
smaller current loop has significantly lower ESL then an 0603.  
The reduction in ESL varies by EIA size, however, ESL is  
typically reduced 60ꢀ or more with an LICC versus a  
standard MLCC.  
An IDC is one single capacitor with an internal structure that  
has been optimized for low ESL. Similar to standard MLCC  
versus LICCs, the reduction in ESL varies by EIA case size.  
Typically, for the same EIA size, an IDC delivers an ESL that is  
at least 80ꢀ lower than an MLCC.  
59  
Low Inductance Capacitors  
Introduction  
LAND GRID ARRAY (LGA) CAPACITORS  
LOW INDUCTANCE CHIP ARRAYS (LICA®)  
Land Grid Array (LGA) capacitors are based on the first Low  
ESL MLCC technology created to specifically address the  
design needs of current day Power Delivery Networks (PDNs).  
This is the 3rd low inductance capacitor technology  
developed by AVX. LGA technology provides engineers with  
new options. The LGA internal structure and manufacturing  
technology eliminates the historic need for a device to be  
physically small to create small current loops to minimize  
inductance.  
The LICA® product family is the result of a joint development  
effort between AVX and IBM to develop a high performance  
MLCC family of decoupling capacitors. LICA was introduced  
in the 1980s and remains the leading choice of designers in  
high performance semiconductor packages and high  
reliability board level decoupling applications.  
LICA® products are used in 99.999ꢀ uptime semiconductor  
package applications on both ceramic and organic  
substrates. The C4 solder ball termination option is the  
perfect compliment to flip-chip packaging technology.  
Mainframe class CPUs, ultimate performance multi-chip  
modules, and communications systems that must have the  
reliability of 5 9’s use LICA®.  
LICA® products with either Sn/Pb or Pb-free solder balls are  
used for decoupling in high reliability military and aerospace  
applications. These LICA® devices are used for decoupling of  
large pin count FPGAs, ASICs, CPUs, and other high power  
ICs with low operating voltages.  
The first family of LGA products are 2 terminal devices. A  
2 terminal 0306 LGA delivers ESL performance that is equal  
to or better than an 0306 8 terminal IDC. The 2 terminal 0805  
LGA delivers ESL performance that approaches the 0508  
8 terminal IDC. New designs that would have used 8 terminal  
IDCs are moving to 2 terminal LGAs because the layout is  
easier for a 2 terminal device and manufacturing yield is better  
for a 2 terminal LGA versus an 8 terminal IDC.  
LGA technology is also used in a 4 terminal family of products  
that AVX is sampling and will formerly introduce in 2008.  
Beyond 2008, there are new multi-terminal LGA product  
families that will provide even more attractive options for PDN  
designers.  
When high reliability decoupling applications require the very  
lowest ESL capacitors, LICA® products are the best option.  
470 nF 0306 Impedance Comparison  
1
0306 2T-LGA  
0306 LICC  
0306 8T-IDC  
0603 MLCC  
0.1  
0.01  
0.001  
1
10  
100  
1000  
Frequency (MHz)  
Figure 2 MLCC, LICC, IDC, and LGA technologies deliver different levels of equivalent series inductance (ESL).  
60  
Low Inductance Capacitors (RoHS)  
0612/0508/0306/0204 LICC (Low Inductance Chip Capacitors)  
GENERAL DESCRIPTION  
The key physical characteristic determining equivalent  
series inductance (ESL) of a capacitor is the size of the  
current loop it creates. The smaller the current loop, the  
lower the ESL.  
A standard surface mount MLCC is rectangular in shape  
with electrical terminations on its shorter sides. A Low  
Inductance Chip Capacitor (LICC) sometimes referred to  
as Reverse Geometry Capacitor (RGC) has its  
terminations on the longer sides of its rectangular shape.  
The image on the right shows the termination differences  
between an MLCC and an LICC.  
LICC  
MLCC  
When the distance between terminations is reduced, the  
size of the current loop is reduced. Since the size of the  
current loop is the primary driver of inductance, an 0306  
with a smaller current loop has significantly lower ESL  
then an 0603. The reduction in ESL varies by EIA size,  
however, ESL is typically reduced 60ꢀ or more with an  
LICC versus a standard MLCC.  
PERFORMANCE CHARACTERISTICS  
Capacitance Tolerances K = 10ꢀ; M = 20ꢀ  
Operation  
X7R = -55ꢁC to +125ꢁC  
X5R = -55ꢁC to +85ꢁC  
X7S = -55ꢁC to +125ꢁC  
Temperature Range  
AVX LICC products are available with a lead-free finish of  
plated Nickel/Tin.  
Temperature Coefficient X7R, X5R = 15ꢀ; X7S = 22ꢀ  
Voltage Ratings  
4, 6.3, 10, 16, 25 VDC  
Dissipation Factor  
4V, 6.3V = 6.5ꢀ max; 10V = 5.0ꢀ max;  
16V = 3.5ꢀ max; 25V = 3.0ꢀ max  
Insulation Resistance  
(@+25°C, RVDC)  
100,000MΩ min, or 1,000MΩ per  
µF min.,whichever is less  
HOW TO ORDER  
0612  
Z
D
105  
M
A
T
2
A*  
Size  
0204  
0306  
0508  
0612  
Voltage  
4 = 4V  
6 = 6.3V  
Z = 10V  
Y = 16V  
3 = 25V  
5 = 50V  
Dielectric  
C = X7R  
D = X5R  
W = X6S  
Z = X7S  
Capacitance  
Code (In pF)  
2 Sig. Digits +  
Number of Zeros  
Capacitance  
Tolerance  
K = 10ꢀ  
Failure Rate Terminations  
Packaging  
Available  
2 = 7" Reel  
4 = 13" Reel  
Thickness  
Thickness  
mm (in)  
0.35 (0.014)  
0.56 (0.022)  
0.61 (0.024)  
0.76 (0.030)  
1.02 (0.040)  
1.27 (0.050)  
A = N/A  
T = Plated Ni  
and Sn  
M = 20ꢀ  
NOTE: Contact factory for availability of Termination and Tolerance Options for Specific Part Numbers.  
TYPICAL IMPEDANCE CHARACTERISTICS  
10  
1
10  
MLCC_0805  
MLCC_1206  
1
0.1  
0.1  
LICC_0508  
LICC_0612  
0.01  
0.001  
0.01  
0.001  
1
10  
Frequency (MHz)  
100  
1000  
1
10  
100  
1000  
Frequency (MHz)  
61  
Low Inductance Capacitors (RoHS)  
0612/0508/0306/0204 LICC (Low Inductance Chip Capacitors)  
SIZE  
0204  
0306  
0508  
0612  
PHYSICAL DIMENSIONS AND  
PAD LAYOUT  
Packaging  
Embossed  
Embossed  
Embossed  
mm  
0.81 0.15  
(0.032 0.006)  
1.27 0.25  
(0.050 0.010)  
1.60 0.25  
(0.063 0.010)  
Length  
(in.)  
mm  
(in.)  
1.60 0.15  
(0.063 0.006)  
2.00 0.25  
(0.080 0.010)  
3.20 0.25  
(0.126 0.010)  
Width  
t
WVDC  
4
6.3 10 16  
4
6.3 10 16 25 50 6.3 10 16 25 50 6.3 10 16 25 50  
W
CAP 0.001  
(µF)  
0.0022  
T
0.0047  
0.010  
0.015  
0.022  
0.047  
0.068  
0.10  
0.15  
0.22  
0.47  
0.68  
1.0  
L
PHYSICAL CHIP DIMENSIONS mm (in)  
L
W
t
1.60 0.25  
(0.063 0.010)  
3.20 0.25  
(0.126 0.010)  
0.13 min.  
(0.005 min.)  
0612  
0508  
0306  
0204  
1.27 0.25  
(0.050 0.010)  
2.00 0.25  
(0.080 0.010)  
0.13 min.  
(0.005 min.)  
0.81 0.15  
(0.032 0.006)  
1.60 0.15  
(0.063 0.006)  
0.13 min.  
(0.005 min.)  
0.50 0.05  
(0.020 0.002)  
1.00 0.05  
(0.040 0.002)  
0.18 0.08  
(0.007 0.003)  
1.5  
T - See Range Chart for Thickness and Codes  
2.2  
3.3  
PAD LAYOUT DIMENSIONS  
mm (in)  
C
4.7  
A
B
10  
0612  
0508  
0306  
0204  
0.76 (0.030)  
0.51 (0.020)  
0.31 (0.012)  
3.05 (0.120)  
2.03 (0.080)  
1.52 (0.060)  
.635 (0.025)  
0.51 (0.020)  
0.51 (0.020)  
Solid = X7R  
= X6S  
= X5R  
= X7S  
mm (in.)  
mm (in.)  
mm (in.)  
mm (in.)  
0306  
0204  
0508  
0612  
Code Thickness  
0.61 (0.024)  
Code Thickness  
Code Thickness  
Code Thickness  
A
C
0.35 (0.014)  
S
V
A
0.56 (0.022)  
0.76 (0.030)  
1.02 (0.040)  
S
V
0.56 (0.022)  
0.76 (0.030)  
1.02 (0.040)  
1.27 (0.050)  
W
A
“B”  
C
“A”  
C
62  
Low Inductance Capacitors (SnPb)  
0612/0508/0306/0204 Tin Lead Termination “B”  
GENERAL DESCRIPTION  
The key physical characteristic determining equivalent  
series inductance (ESL) of a capacitor is the size of the  
current loop it creates. The smaller the current loop, the  
lower the ESL.  
A standard surface mount MLCC is rectangular in shape  
with electrical terminations on its shorter sides. A Low  
Inductance Chip Capacitor (LICC) sometimes referred to  
as Reverse Geometry Capacitor (RGC) has its  
terminations on the longer sides of its rectangular shape.  
The image on the right shows the termination differences  
between an MLCC and an LICC.  
LICC  
MLCC  
When the distance between terminations is reduced, the  
size of the current loop is reduced. Since the size of the  
current loop is the primary driver of inductance, an 0306  
with a smaller current loop has significantly lower ESL  
then an 0603. The reduction in ESL varies by EIA size,  
however, ESL is typically reduced 60ꢀ or more with an  
LICC versus a standard MLCC.  
PERFORMANCE CHARACTERISTICS  
Capacitance Tolerances K = 10ꢀ; M = 20ꢀ  
Operation  
Temperature Range  
X7R = -55ꢁC to +125ꢁC  
X5R = -55ꢁC to +85ꢁC  
X7S = -55ꢁC to +125ꢁC  
AVX LICC products are available with a lead termination  
for high reliability military and aerospace applications that  
must avoid tin whisker reliability issues.  
Temperature Coefficient X7R, X5R = 15ꢀ; X7S = 22ꢀ  
Voltage Ratings  
4, 6.3, 10, 16, 25 VDC  
Dissipation Factor  
4V, 6.3V = 6.5ꢀ max; 10V = 5.0ꢀ max;  
16V = 3.5ꢀ max; 25V = 3.0ꢀ max  
Insulation Resistance  
(@+25°C, RVDC)  
100,000MΩ min, or 1,000MΩ per  
µF min.,whichever is less  
HOW TO ORDER  
LD18  
Z
D
105  
M
A
B
2
A*  
Size  
Voltage  
4 = 4V  
6 = 6.3V  
Z = 10V  
Y = 16V  
3 = 25V  
5 = 50V  
Dielectric  
C = X7R  
D = X5R  
W = X6S  
Capacitance  
Code (In pF)  
2 Sig. Digits +  
Number of Zeros  
Capacitance  
Tolerance  
K = 10ꢀ  
Failure Rate Terminations  
Packaging  
Available  
2 = 7" Reel  
4 = 13" Reel  
Thickness  
Thickness  
mm (in)  
0.35 (0.014)  
0.56 (0.022)  
0.61 (0.024)  
0.76 (0.030)  
1.02 (0.040)  
1.27 (0.050)  
LD15 = 0204  
LD16 = 0306  
LD17 = 0508  
LD18 = 0612  
A = N/A  
B = 5ꢀ min lead  
M = 20ꢀ  
NOTE: Contact factory for availability of Termination and Tolerance Options for Specific Part Numbers.  
TYPICAL IMPEDANCE CHARACTERISTICS  
10  
1
10  
MLCC_0805  
MLCC_1206  
1
0.1  
0.1  
LICC_0508  
LICC_0612  
0.01  
0.001  
0.01  
0.001  
1
10  
Frequency (MHz)  
100  
1000  
1
10  
100  
1000  
Frequency (MHz)  
63  
Low Inductance Capacitors (SnPb)  
0612/0508/0306/0204 Tin Lead Termination “B”  
PHYSICAL DIMENSIONS AND  
PAD LAYOUT  
PREFERRED SIZES ARE SHADED  
SIZE  
LD15  
LD16  
LD17  
LD18  
Soldering  
Reflow Only  
All Paper  
Reflow Only  
All Paper  
Reflow/Wave  
Packaging  
mm  
(L) Length  
(in.)  
Paper/Embossed  
t
0.81 0.15  
1.27 0.25  
1.60 0.25  
W
(0.032 0.006)  
(0.050 0.010)  
(0.063 0.010)  
mm  
(W) Width  
(in.)  
1.60 0.15  
(0.063 0.006)  
2.00 0.25  
(0.080 0.010)  
3.20 0.25  
(0.126 0.010)  
WVDC  
4
6.3 10 16 6.3 10 16 25 50 6.3 10 16 25 50 6.3 10 16 25 50  
T
Cap  
(pF)  
1000  
2200  
4700  
0.010  
0.015  
0.022  
0.047  
0.068  
0.10  
0.15  
0.22  
0.47  
0.68  
1.0  
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
S
S
S
S
S
S
S
S
S
S
S
V
A
A
A
S
S
S
S
S
S
S
S
S
S
S
V
A
A
S
S
S
S
S
S
S
S
V
V
A
A
S
S
S
S
S
S
V
A
A
V
V
V
V
V
V
A
A
A
S
S
S
S
S
S
S
S
S
S
S
S
V
V
W
A
A
S
S
S
S
S
S
S
S
S
S
S
S
V
V
W
A
S
S
S
S
S
S
S
S
S
S
V
S
S
S
S
S
S
S
V
V
V
V
Cap  
(µF)  
V
L
W
W
W
W
W
W
C
C
V
W
PHYSICAL CHIP DIMENSIONS mm (in)  
V
W
A
L
W
t
1.60 0.25  
(0.063 0.010)  
3.20 0.25  
(0.126 0.010)  
0.13 min.  
(0.005 min.)  
1.5  
2.2  
3.3  
4.7  
0612  
0508  
0306  
0204  
1.27 0.25  
(0.050 0.010)  
2.00 0.25  
(0.080 0.010)  
0.13 min.  
(0.005 min.)  
10  
0.81 0.15  
(0.032 0.006)  
1.60 0.15  
(0.063 0.006)  
0.13 min.  
(0.005 min.)  
WVDC  
4
6.3 10 16 6.3 10 16 25 50 6.3 10 16 25 50 6.3 10 16 25 50  
SIZE  
0204  
0306  
0508  
0612  
0.50 0.05  
(0.020 0.002)  
1.00 0.05  
(0.040 0.002)  
0.18 0.08  
(0.007 0.003)  
Solid = X7R  
= X6S  
= X5R  
= X7S  
T - See Range Chart for Thickness and Codes  
mm (in.)  
mm (in.)  
mm (in.)  
mm (in.)  
LD16 - 0306  
LD15 - 0204  
LD17 - 0508  
LD18 - 0612  
Code Thickness  
0.61 (0.024)  
Code Thickness  
Code Thickness  
Code Thickness  
PAD LAYOUT DIMENSIONS  
mm (in)  
C
A
C
0.35 (0.014)  
S
V
A
0.56 (0.022)  
0.76 (0.030)  
1.02 (0.040)  
S
V
0.56 (0.022)  
0.76 (0.030)  
1.02 (0.040)  
1.27 (0.050)  
A
B
0612  
0508  
0306  
0204  
0.76 (0.030)  
0.51 (0.020)  
0.31 (0.012)  
3.05 (0.120)  
2.03 (0.080)  
1.52 (0.060)  
.635 (0.025)  
0.51 (0.020)  
0.51 (0.020)  
W
A
“B”  
C
“A”  
C
64  
IDC Low Inductance Capacitors (RoHS)  
0612/0508 IDC (InterDigitated Capacitors)  
GENERAL DESCRIPTION  
Inter-Digitated Capacitors (IDCs) are used for both semiconductor  
package and board level decoupling. The equivalent series  
inductance (ESL) of a single capacitor or an array of capacitors in  
parallel determines the response time of a Power Delivery Network  
(PDN). The lower the ESL of a PDN, the faster the response time.  
A designer can use many standard MLCCs in parallel to reduce ESL  
or a low ESL Inter-Digitated Capacitor (IDC) device. These IDC  
devices are available in versions with a maximum height of 0.95mm  
or 0.55mm.  
0612  
0508  
IDCs are typically used on packages of semiconductor products  
+
+
with power levels of 15 watts or greater. Inter-Digitated Capacitors  
are used on CPU, GPU, ASIC, and ASSP devices produced on  
0.13µ, 90nm, 65nm, and 45nm processes. IDC devices are used  
on both ceramic and organic package substrates. These low ESL  
surface mount capacitors can be placed on the bottom side or the  
top side of a package substrate. The low profile 0.55mm maximum  
height IDCs can easily be used on the bottom side of BGA  
packages or on the die side of packages under a heat spreader.  
+
+
IDCs are used for board level decoupling of systems with speeds of  
300MHz or greater. Low ESL IDCs free up valuable board space by  
reducing the number of capacitors required versus standard  
MLCCs. There are additional benefits to reducing the number of  
capacitors beyond saving board space including higher reliability  
from a reduction in the number of components and lower  
placement costs based on the need for fewer capacitors.  
TYPICAL IMPEDANCE  
10  
MLCC_1206  
LICC_0612  
1
The Inter-Digitated Capacitor (IDC) technology was developed by  
AVX. This is the second family of Low Inductance MLCC products  
created by AVX. IDCs are a cost effective alternative to AVX’s first  
generation low ESL family for high-reliability applications known as  
LICA (Low Inductance Chip Array).  
0.1  
IDC_0612  
0.01  
0.001  
1
10  
100  
1000  
AVX IDC products are available with a lead-free finish of plated  
Nickel/Tin.  
Frequency (MHz)  
HOW TO ORDER  
225  
M
W
3
L
1
6
D
A
T
3
A
Capacitance Capacitance  
Style  
IDC  
Case  
Low  
Inductance  
Number Voltage Dielectric  
Failure Termination Packaging  
Thickness  
Max. Thickness  
mm (in.)  
Code (In pF)  
Tolerance  
of  
Rate  
4 = 4V  
C = X7R  
D = X5R  
Z = X7S  
T = Plated Ni  
and Sn  
Available  
Size  
Terminals  
1 = 8 Terminals  
2 Sig. Digits + M = 20ꢀ  
Number of  
Zeros  
A = N/A  
6 = 6.3V  
Z = 10V  
Y = 16V  
3 = 25V  
1=7" Reel  
3=13" Reel A=0.95 (0.037)  
S=0.55 (0.022)  
2 = 0508  
3 = 0612  
NOTE: Contact factory for availability of Termination and Tolerance Options for Specific Part Numbers.  
PERFORMANCE CHARACTERISTICS  
Capacitance Tolerance  
Operation  
20ꢀ Preferred  
Dielectric Strength  
CTE (ppm/C)  
No problems observed after 2.5 x RVDC  
for 5 seconds at 50mA max current  
X7R = -55ꢁC to +125ꢁC  
X5R = -55ꢁC to +85ꢁC  
X7S = -55ꢁC to +125ꢁC  
15ꢀ (0VDC)  
Temperature Range  
12.0  
Thermal Conductivity 4-5W/M K  
Temperature Coefficient  
Voltage Ratings  
4, 6.3, 10, 16 VDC  
Terminations  
Available  
Plated Nickel and Solder  
0.037" (0.95mm)  
Dissipation Factor  
4V, 6.3V = 6.5ꢀ max;  
10V = 5.0ꢀ max;  
16V = 3.5ꢀ max  
Max. Thickness  
Insulation Resistance  
(@+25°C, RVDC)  
100,000MΩ min, or 1,000MΩ per  
µF min.,whichever is less  
65  
IDC Low Inductance Capacitors (RoHS)  
0612/0508 IDC (InterDigitated Capacitors)  
SIZE  
Thin 0508  
0508  
Thin 0612  
0612  
mm  
(in.)  
2.03 0.20  
2.03 0.20  
3.20 0.20  
3.20 0.20  
Length  
(0.080 0.008)  
(0.080 0.008)  
(0.126 0.008)  
(0.126 0.008)  
mm  
(in.)  
1.27 0.20  
(0.050 0.008)  
1.27 0.20  
(0.050 0.008)  
1.60 0.20  
(0.063 0.008)  
1.60 0.20  
(0.063 0.008)  
Width  
Terminal  
Pitch  
mm  
(in.)  
0.50 0.05  
(0.020 0.002)  
0.50 0.05  
(0.020 0.002)  
0.80 0.10  
(0.031 0.004)  
0.80 0.10  
(0.031 0.004)  
mm  
(in.)  
0.55 MAX.  
(0.022) MAX.  
0.95 MAX.  
(0.037) MAX.  
0.55 MAX.  
(0.022) MAX.  
0.95 MAX.  
(0.037) MAX.  
Thickness  
WVDC  
4
6.3  
10  
16  
25  
4
6.3  
10  
16  
25  
4
6.3  
10  
16  
4
6.3  
10  
16  
Cap  
(µF)  
0.01  
0.033  
0.047  
0.068  
0.10  
0.22  
0.33  
0.47  
0.68  
1.0  
Consult factory for  
additional requirements  
= X7R  
= X5R  
= X7S  
1.5  
2.2  
3.3  
PHYSICAL DIMENSIONS AND PAD LAYOUT  
L
P
E
T
D
BW  
A
B
C
BL  
W
PAD LAYOUT  
DIMENSIONS  
PHYSICAL CHIP DIMENSIONS millimeters (inches)  
0612  
0612  
A
B
1.65  
C
2.54  
D
0.46  
E
0.80  
L
W
BW  
0.41 0.10  
BL  
P
+0.25  
0.89  
3.20 0.20  
1.60 0.20  
0.18  
0.80 0.10  
(0.031 0.004)  
-0.08  
+0.010  
-0.003  
(0.035) (0.065) (0.100) (0.018) (0.031)  
(0.126 0.008) (0.063 0.008) (0.016 0.004) (0.007  
)
0508  
0508  
A
B
C
D
E
L
W
BW  
BL  
P
+0.15  
+0.25  
-0.08  
2.03 0.20  
(0.080 0.008)  
1.27 0.20  
0.25  
0.18  
0.50 0.05  
(0.020 0.002)  
0.64  
1.27  
1.91  
0.28  
0.50  
-0.10  
+0.010  
-0.003  
(0.050 0.008) (0.010 +0.006  
)
(0.007  
)
(0.025) (0.050) (0.075) (0.011) (0.020)  
-0.004  
66  
IDC Low Inductance Capacitors (SnPb)  
0612/0508 IDC with Sn/Pb Termination  
GENERAL DESCRIPTION  
Inter-Digitated Capacitors (IDCs) are used for both semiconductor  
package and board level decoupling. The equivalent series  
inductance (ESL) of a single capacitor or an array of capacitors in  
parallel determines the response time of a Power Delivery Network  
(PDN). The lower the ESL of a PDN, the faster the response time.  
A designer can use many standard MLCCs in parallel to reduce ESL  
or a low ESL Inter-Digitated Capacitor (IDC) device. These IDC  
devices are available in versions with a maximum height of 0.95mm  
or 0.55mm.  
0612  
0508  
IDCs are typically used on packages of semiconductor products  
+
+
with power levels of 15 watts or greater. Inter-Digitated Capacitors  
are used on CPU, GPU, ASIC, and ASSP devices produced on  
0.13µ, 90nm, 65nm, and 45nm processes. IDC devices are used  
on both ceramic and organic package substrates. These low ESL  
surface mount capacitors can be placed on the bottom side or the  
top side of a package substrate. The low profile 0.55mm maximum  
height IDCs can easily be used on the bottom side of BGA  
packages or on the die side of packages under a heat spreader.  
+
+
IDCs are used for board level decoupling of systems with speeds of  
300MHz or greater. Low ESL IDCs free up valuable board space by  
reducing the number of capacitors required versus standard  
MLCCs. There are additional benefits to reducing the number of  
capacitors beyond saving board space including higher reliability  
from a reduction in the number of components and lower  
placement costs based on the need for fewer capacitors.  
The Inter-Digitated Capacitor (IDC) technology was developed by  
AVX. This is the second family of Low Inductance MLCC products  
created by AVX. IDCs are a cost effective alternative to AVX’s first  
generation low ESL family for high-reliability applications known as  
LICA (Low Inductance Chip Array).  
TYPICAL IMPEDANCE  
10  
MLCC_1206  
LICC_0612  
1
0.1  
IDC_0612  
0.01  
AVX IDC products are available with a lead termination for high  
reliability military and aerospace applications that must avoid tin  
whisker reliability issues.  
0.001  
1
10  
100  
1000  
Frequency (MHz)  
HOW TO ORDER  
225  
M
L
3
L
1
6
D
A
B
3
A
Capacitance Capacitance  
Style  
IDC  
Case  
Low  
Inductance  
Number  
of  
Terminals  
1 = 8 Terminals  
Dielectric  
C = X7R  
D = X5R  
Z = X7S  
Failure Termination Packaging  
Thickness  
Max. Thickness  
mm (in.)  
Voltage  
4 = 4V  
6 = 6.3V  
Z = 10V  
Y = 16V  
3 = 25V  
Code (In pF)  
Tolerance  
Rate  
B = 5ꢀ min.  
Lead  
Available  
Size  
2 Sig. Digits + M = 20ꢀ  
Number of  
Zeros  
A = N/A  
1=7" Reel  
3=13" Reel A=0.95 (0.037)  
S=0.55 (0.022)  
2 = 0508  
3 = 0612  
NOTE: Contact factory for availability of Termination and Tolerance Options for Specific Part Numbers.  
PERFORMANCE CHARACTERISTICS  
Capacitance Tolerance  
Operation  
20ꢀ Preferred  
Dielectric Strength  
CTE (ppm/C)  
No problems observed after 2.5 x RVDC  
for 5 seconds at 50mA max current  
X7R = -55ꢁC to +125ꢁC  
X5R = -55ꢁC to +85ꢁC  
X7S = -55ꢁC to +125ꢁC  
15ꢀ (0VDC)  
Temperature Range  
12.0  
Thermal Conductivity 4-5W/M K  
Temperature Coefficient  
Voltage Ratings  
4, 6.3, 10, 16 VDC  
Terminations  
Available  
Plated Nickel and 5ꢀ min. Lead  
0.037" (0.95mm)  
Dissipation Factor  
4V, 6.3V = 6.5ꢀ max;  
10V = 5.0ꢀ max;  
16V = 3.5ꢀ max  
Max. Thickness  
Insulation Resistance  
(@+25°C, RVDC)  
100,000MΩ min, or 1,000MΩ per  
µF min.,whichever is less  
67  
IDC Low Inductance Capacitors (SnPb)  
0612/0508 IDC with Sn/Pb Termination  
SIZE  
Thin 0508  
0508  
Thin 0612  
0612  
mm  
(in.)  
2.03 0.20  
2.03 0.20  
3.20 0.20  
3.20 0.20  
Length  
(0.080 0.008)  
(0.080 0.008)  
(0.126 0.008)  
(0.126 0.008)  
mm  
(in.)  
1.27 0.20  
(0.050 0.008)  
1.27 0.20  
(0.050 0.008)  
1.60 0.20  
(0.063 0.008)  
1.60 0.20  
(0.063 0.008)  
Width  
Terminal  
Pitch  
mm  
(in.)  
0.50 0.05  
(0.020 0.002)  
0.50 0.05  
(0.020 0.002)  
0.80 0.10  
(0.031 0.004)  
0.80 0.10  
(0.031 0.004)  
mm  
(in.)  
0.55 MAX.  
(0.022) MAX.  
0.95 MAX.  
(0.037) MAX.  
0.55 MAX.  
(0.022) MAX.  
0.95 MAX.  
(0.037) MAX.  
Thickness  
WVDC  
4
6.3  
10  
16  
25  
4
6.3  
10  
16  
25  
4
6.3  
10  
16  
4
6.3  
10  
16  
Cap  
(µF)  
0.01  
0.033  
0.047  
0.068  
0.10  
0.22  
0.33  
0.47  
0.68  
1.0  
Consult factory for  
additional requirements  
= X7R  
= X5R  
= X7S  
1.5  
2.2  
3.3  
PHYSICAL DIMENSIONS AND PAD LAYOUT  
L
P
E
T
D
BW  
A
B
C
BL  
W
PAD LAYOUT  
DIMENSIONS  
PHYSICAL CHIP DIMENSIONS millimeters (inches)  
0612  
0612  
A
B
1.65  
C
2.54  
D
0.46  
E
0.80  
L
W
BW  
0.41 0.10  
BL  
P
+0.25  
0.89  
3.20 0.20  
1.60 0.20  
0.18  
0.80 0.10  
(0.031 0.004)  
-0.08  
+0.010  
-0.003  
(0.035) (0.065) (0.100) (0.018) (0.031)  
(0.126 0.008) (0.063 0.008) (0.016 0.004) (0.007  
)
0508  
0508  
A
B
C
D
E
L
W
BW  
0.254 0.10  
BL  
P
+0.25  
-0.08  
2.03 0.20  
(0.080 0.008)  
1.27 0.20  
(0.050 0.008) (0.010 0.004) (0.007  
0.18  
0.50 0.05  
(0.020 0.002)  
0.64  
1.27  
1.91  
0.28  
0.50  
+0.010  
-0.003  
)
(0.025) (0.050) (0.075) (0.011) (0.020)  
68  
LGA Low Inductance Capacitors  
0204/0306/0805 Land Grid Arrays  
Land Grid Array (LGA) capacitors are the latest family of low inductance MLCCs from AVX.  
These new LGA products are the third low inductance family developed by AVX. The in-  
novative LGA technology sets a new standard for low inductance MLCC performance.  
Electronic Products awarded its 2006 Product of the Year Award to the LGA Decoupling  
capacitor.  
Our initial 2 terminal versions of LGA technology deliver the performance of an 8 terminal  
IDC low inductance MLCC with a number of advantages including:  
Simplified layout of 2 large solder pads compared to 8 small pads for IDCs  
Opportunity to reduce PCB or substrate contribution to system ESL by using multi-  
ple parallel vias in solder pads  
Advanced FCT manufacturing process used to create uniformly flat terminations on  
the capacitor that resist “tombstoning”  
Better solder joint reliability  
APPLICATIONS  
Semiconductor Packages  
Microprocessors/CPUs  
Graphics Processors/GPUs  
Chipsets  
FPGAs  
ASICs  
Board Level Device Decoupling  
Frequencies of 300 MHz or more  
ICs drawing 15W or more  
Low voltages  
High speed buses  
0306 2 TERMINAL LGA COMPARISON WITH 0306 8 TERMINAL IDC  
1
0.1  
0.01  
0.001  
1
10  
100  
1000  
Frequency (MHz)  
69  
LGA Low Inductance Capacitors  
0204/0306/0805 Land Grid Arrays  
SIZE  
LG12 (0204)  
0.50 (0.020)  
1.00 (0.039)  
X7S (Z)  
LG22 (0306)  
0.76 (0.030)  
1.60 (0.063)  
LGC2 (0805)  
2.06 (0.081)  
1.32 (0.052)  
Length  
Width  
mm (in.)  
mm (in.)  
Temp. Char.  
Working Voltage  
X5R (D)  
X6S (W)  
X7R (C)  
X5R (D)  
6.3  
(6)  
X7S (Z)  
X6S (W)  
X7R (C)  
X5R (D)  
X7S (Z)  
X6S (W)  
6.3  
(6)  
4
(4)  
6.3  
(6)  
4
(4)  
6.3  
4
(4)  
10  
(Z)  
6.3  
(6)  
4
(4)  
4
(4)  
6.3  
(6)  
4
(4)  
6.3  
(6)  
4
(4)  
6.3  
(6)  
4
(4)  
6.3  
(6)  
4
(4)  
6.3  
(6)  
4
(4)  
6.3  
(6)  
4
(4)  
(6)  
Cap (µF)  
0.010 (103)  
0.022 (223)  
0.047 (473)  
0.100 (104)  
0.220 (224)  
0.330 (334)  
0.470 (474)  
1.000 (105)  
2.200 (225)  
Please  
contact AVX  
for values  
= X7R  
= X5R  
= X7S  
= X6S  
HOW TO ORDER  
LG  
1
2
6
Z
104  
M
A
T
2
S
1
Style Case Number of Working Temperature Coded  
Cap  
Termination Termination Packaging  
Thickness  
Number of  
Size  
Terminals Voltage Characteristic Cap Tolerance  
Style  
100ꢀ Sn*  
Tape & Reel S = 0.55mm Capacitors  
1 = 0204  
2 = 0306  
2
4 = 4V  
6 = 6.3V  
Z = 10V  
C = X7R  
D = X5R  
Z = X7S  
W = X6S  
M = 20ꢀ A = “U” Land  
2 = 7" Reel  
max  
*Contact factory for  
other termination  
finishes  
4 = 13" Reel  
C
= 0805  
Reverse  
Geometry LGA  
LG12, LG22  
Standard  
Geometry LGA  
LGC2  
BL  
L
BL  
L
T
T
BL  
BW  
W
BL  
BW  
W
L
L
PART DIMENSIONS  
mm (inches)  
Series  
L
W
T
BW  
BL  
0.5 0.05  
(0.020 0.002)  
1.00 0.10  
(0.039 0.004)  
0.50 0.05  
(0.020 0.002)  
0.8 0.10  
(0.031 0.004)  
0.13 0.08  
(0.005 0.003)  
LG12 (0204)  
0.76 0.10  
(0.030 0.004)  
1.60 0.10  
(0.063 0.004)  
0.50 0.05  
(0.020 0.002)  
1.50 0.10  
(0.059 0.004)  
0.28 0.08  
(0.011 0.003)  
LG22 (0306)  
LGC2 (0805)  
2.06 0.10  
(0.081 0.004)  
1.32 0.10  
(0.052 0.004)  
0.50 0.05  
(0.020 0.002)  
1.14 0.10  
(0.045 0.004)  
0.90 0.08  
(0.035 0.003)  
RECOMMENDED SOLDER PAD DIMENSIONS  
mm (inches)  
PL  
Series  
PL  
PW1  
G
LG12 (0204)  
LG22 (0306)  
LGC2 (0805)  
0.50 (0.020)  
0.65 (0.026)  
1.25 (0.049)  
1.00 (0.039)  
1.50 (0.059)  
1.40 (0.055)  
0.20 (0.008)  
0.20 (0.008)  
0.20 (0.008)  
G
PW1  
70  
Low Inductance Capacitors  
LICA® (Low Inductance Decoupling Capacitor Arrays)  
LICA® arrays utilize up to four separate capacitor sections in one  
ceramic body (see Configurations and Capacitance Options). These  
designs exhibit a number of technical advancements:  
Low Inductance features–  
Low resistance platinum electrodes in a low aspect ratio pattern  
Double electrode pickup and perpendicular current paths  
C4 “flip-chip” technology for minimal interconnect inductance  
HOW TO ORDER  
4
A
A
LICA  
3
T
102  
M
3
F
C
# of  
Inspection  
Code  
Code  
Face  
A = Bar  
B = No Bar  
Style  
&
Size  
Voltage Dielectric  
5V = 9 D = X5R  
10V = Z T = T55T  
25V = 3 S = High K 103 = 10 nF  
T55T 104 = 100 nF  
Cap/Section Capacitance Height  
(EIA Code) Tolerance Code  
102 = 1000 pF M = 20ꢀ 6 = 0.500mm  
Termination  
Reel Packaging  
M = 7" Reel  
R = 13" Reel  
6 = 2"x2" Waffle Pack  
8 = 2"x2" Black Waffle  
Pack  
7 = 2"x2" Waffle Pack  
w/ termination  
facing up  
Caps/Part  
F = C4 Solder  
1 = one A = Standard  
2 = two B = COTS+  
4 = four  
Balls- 97Pb/3Sn  
P = GMV  
3 = 0.650mm H = C4 Solder Balls  
X = MIL-PRF-123 C = Dot, S55S  
Dielectrics  
1 = 0.875mm  
Low ESR  
5 = 1.100mm G = Lead Free SAC  
7 = 1.600mm R = Cr-Cu-Au  
N = Cr-Ni-Au  
D = Triangle  
V = Eutectic Lead-  
Tin Bump-  
A = 2"x2" Black Waffle  
Pack  
37ꢀPb/63ꢀSn  
X = None  
w/ termination  
facing up  
C = 4"x4" Waffle Pack  
w/ clear lid  
TABLE 1  
NOTE: Contact factory for  
availability of Termination and  
Tolerance Options for Specific  
Part Numbers.  
Typical Parameters  
Capacitance, 25°C  
Capacitance, 55°C  
Capacitance, 85°C  
Dissipation Factor 25°  
ESR (Nominal)  
DC Resistance  
IR (Minimum @25°) (Design Dependent)  
Dielectric Breakdown, Min  
T55T/S55S  
Units  
Nanofarads  
Nanofarads  
Nanofarads  
Percent  
Milliohms  
Ohms  
Megaohms  
Volts  
ppm/°C 25-100°  
Pico-Henries  
Co  
1.45 x Co  
0.7 x Co  
15  
20  
0.2  
300  
500  
8.5  
30  
Thermal Coefficient of Expansion  
Inductance: (Design Dependent) (Nominal)  
Frequency of Operation  
DC to 5 Gigahertz  
-55° to 125°C  
TERMINATION OPTIONS  
Ambient Temp Range  
SOLDER BALLS  
SOLDER BALL AND PAD DIMENSIONS  
TERMINATION OPTION F, H, G OR V  
0.8 .03 (2 pics)  
0.6 .100mm  
“Centrality”*  
}
0.925 0.03mm  
L = .06mm  
0.925 0.03mm  
Vertical and  
Horizontal  
Pitch=0.4 .02mm  
Code Face  
to Denote  
Orientation  
(Optional)  
C4 Ball diameter:  
.164 .03mm  
TERMINATION OPTION R OR N  
*NOTE: The C4 pattern  
will be within  
0.1mm of the  
center of the  
"H " = (H +.096 .02mm typ)  
t
b
"H " .06  
b
LICA body, in  
both axes.  
"W" = .06mm  
Pin A1 is the lower left hand ball.  
Code  
(Body Height)  
Width  
(W)  
Length  
(L)  
Height  
Body (Hb)  
1
3
5
6
7
1.600mm  
1.600mm  
1.600mm  
1.600mm  
1.600mm  
1.850mm  
1.850mm  
1.850mm  
1.850mm  
1.850mm  
0.875mm  
0.650mm  
1.100mm  
0.500mm  
1.600mm  
71  
Low Inductance Capacitors  
LICA® (Low Inductance Decoupling Capacitor Arrays)  
TEMPERATURE VS CAPACITANCE CHANGE  
TYPICAL S21 FOR LICA AT SINGLE VIA  
Maximum  
+45%  
0
-14  
-28  
-42  
-56  
-70  
LICA T55T/S55S  
CERAMIC  
0%  
Maximum  
-30%  
3
30  
300  
3000  
25°C  
50°C  
60°C  
85°C  
Freq (MHz)  
LICA COMMON PART NUMBER LIST  
CONFIGURATION  
Schematic  
Code Face  
Capacitors per  
Package  
Part Number  
Voltage Thickness (mm)  
D
B
LICA3T193M3FC4AA  
LICA3T153P3FC4AA  
LICA3T134M1FC1AA  
LICA3T104P1FC1AA  
LICA3T333M1FC4AA  
LICA3T263P3FC4AA  
LICA3T244M5FC1AA  
LICA3T194P5FC1AA  
LICA3T394M7FC1AB  
LICA3T314P7FC1AB  
Extended Range  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
0.650  
0.650  
0.875  
0.875  
0.875  
0.650  
1.100  
1.100  
1.600  
1.600  
4
4
1
1
4
4
1
1
1
1
D
C
B
A
CAP  
C
A
Schematic  
Code Face  
D1 C1 B1 A1  
D2 C2 B2 A2  
B1  
B2  
CAP 2  
A2  
D1  
C1  
D2  
CAP 1  
A1  
C2  
LICAZT623M3FC4AB  
LICA3T104M3FC1A  
LICA3T803P3FC1A  
LICA3T423M3FC2A  
LICA3T333P3FC2A  
LICA3S253M3FC4A  
LICAZD753M3FC4AD  
LICAZD504M3FC1AB  
LICAZD604M7FC1AB  
LICA3D193M3FC4AB  
10  
25  
25  
25  
25  
25  
10  
10  
10  
25  
0.650  
0.650  
0.650  
0.650  
0.650  
0.650  
0.650  
0.650  
1.600  
0.650  
4
1
1
2
2
4
4
1
1
4
Schematic  
Code Face  
B1  
B2  
D1  
D2  
D1 C1 B1 A1  
D2 C2 B2 A2  
D3 C3 B3 A3  
D4 C4 B4 A4  
CAP 1  
CAP 2  
A1  
B3  
A2  
B4  
C1  
D3  
C2  
D4  
CAP 3  
A3  
CAP 4  
A4  
C3  
C4  
WAFFLE PACK OPTIONS FOR LICA®  
LICA® PACKAGING SCHEME “M” AND “R”  
8mm conductive plastic tape on reel:  
“M”=7" reel max. qty. 3,000, “R”=13" reel max. qty. 8,000  
FLUOROWARE®  
Code Face  
to Denote  
Orientation  
Code Face  
to Denote  
Orientation  
®
Wells for LICA part, C4 side down  
76 pieces/foot  
1.75mm x 2.01mm x 1.27mm deep  
on 4mm centers  
0.64mm Push Holes  
H20-080  
Option "6"  
Option "C"  
Code Face  
to Denote  
Orientation  
(Typical)  
100 pcs.  
per 2" x 2"  
package  
400 pcs. per  
1.75mm  
4" x 4" package  
Note: Standard configuration is  
Termination side down  
Sprocket Holes: 1.55mm, 4mm pitch  
72  
High Voltage MLC Chips  
For 600V to 5000V Application  
High value, low leakage and small size are difficult parameters to obtain  
in capacitors for high voltage systems. AVX special high voltage MLC  
chip capacitors meet these performance characteristics and are  
designed for applications such as snubbers in high frequency power  
converters, resonators in SMPS, and high voltage coupling/dc blocking.  
These high voltage chip designs exhibit low ESRs at high frequencies.  
Larger physical sizes than normally encountered chips are used to make  
high voltage MLC chip products. Special precautions must be taken in  
applying these chips in surface mount assemblies. The temperature  
gradient during heating or cooling cycles should not exceed 4ºC per  
second. The preheat temperature must be within 50ºC of the peak  
temperature reached by the ceramic bodies through the soldering  
process. Chip sizes 1210 and larger should be reflow soldered only.  
Capacitors may require protective surface coating to prevent external  
arcing.  
NEW 630V RANGE  
HOW TO ORDER  
1808  
A
A
271  
K
A
1
1
A
AVX  
Style  
0805  
1206  
1210  
1808  
1812  
1825  
2220  
2225  
3640  
Voltage  
Temperature Capacitance Code Capacitance  
Test Level  
A = Standard 1 = Pd/Ag  
T = Plated  
Termination*  
Packaging  
Special  
Code  
600V/630V = C Coefficient  
(2 significant digits  
+ no. of zeros)  
Examples:  
Tolerance  
C0G:J = 5ꢀ  
K = 10ꢀ  
1 = 7" Reel  
1000V = A  
1500V = S  
2000V = G  
2500V = W  
3000V = H  
4000V = J  
5000V = K  
C0G = A  
X7R = C  
3 = 13" Reel A = Standard  
9 = Bulk  
Ni and Sn  
(RoHS Compliant)  
10 pF = 100  
M = 20ꢀ  
100 pF = 101 X7R:K = 10ꢀ  
1,000 pF = 102  
22,000 pF = 223  
220,000 pF = 224  
1 µF =105  
M = 20ꢀ  
Z = +80ꢀ,  
-20ꢀ  
*Note: Terminations with 5ꢀ minimum lead (Pb) is available, see pages 75 and 76 for LD style.  
Notes: Capacitors with X7R dielectrics are not intended for applications across AC supply mains or AC line filtering with polarity reversal. Contact plant for recommendations.  
Contact factory for availability of Termination and Tolerance options for Specific Part Numbers.  
W
L
T
t
DIMENSIONS  
millimeters (inches)  
SIZE  
0805  
1206  
1210*  
1808*  
1812*  
1825*  
2220*  
2225*  
3640*  
(L) Length  
2.01 0.20  
3.20 0.20  
3.20 0.20  
4.57 0.25  
4.50 0.30  
4.50 0.30  
5.70 0.40  
5.72 0.25  
9.14 0.25  
(0.079 0.008) (0.126 0.008) (0.126 0.008) (0.180 0.010) (0.177 0.012) (0.177 0.012) (0.224 0.016) (0.225 0.010) (0.360 0.010)  
1.25 0.20 1.60 0.20 2.50 0.20 2.03 0.25 3.20 0.20 6.40 0.30 5.00 0.40 6.35 0.25 10.2 0.25  
(0.049 0.008) (0.063 0.008) (0.098 0.008) (0.080 0.010) (0.126 0.008) (0.252 0.012) (0.197 0.016) (0.250 0.010) (0.400 0.010)  
(W) Width  
(T) Thickness  
Max.  
1.30  
(0.051)  
1.52  
(0.060)  
1.70  
(0.067)  
2.03  
(0.080)  
2.54  
(0.100)  
2.54  
(0.100)  
3.30  
(0.130)  
2.54  
(0.100)  
2.54  
(0.100)  
(t) terminal min.  
0.50 0.25  
0.25 (0.010)  
0.25 (0.010)  
0.75 (0.030)  
0.25 (0.010)  
1.02 (0.040)  
0.25 (0.010)  
1.02 (0.040)  
0.25 (0.010)  
1.02 (0.040)  
0.25 (0.010)  
1.02 (0.040)  
0.25 (0.010)  
1.02 (0.040)  
0.76 (0.030)  
1.52 (0.060)  
max. (0.020 0.010) 0.75 (0.030)  
*Reflow Soldering Only  
73  
High Voltage MLC Chips  
For 600V to 5000V Applications  
C0G Dielectric  
Performance Characteristics  
Capacitance Range  
10 pF to 0.047 µF  
(25ꢁC, 1.0 0.2 Vrms at 1kHz, for 1000 pF use 1 MHz)  
Capacitance Tolerances  
5ꢀ, 10ꢀ, 20ꢀ  
Dissipation Factor  
0.1ꢀ max. (+25ꢁC, 1.0 0.2 Vrms, 1kHz, for 1000 pF use 1 MHz)  
Operating Temperature Range  
Temperature Characteristic  
Voltage Ratings  
-55ꢁC to +125ꢁC  
0
30 ppm/ꢁC (0 VDC)  
600, 630, 1000, 1500, 2000, 2500, 3000, 4000 & 5000 VDC (+125ꢁC)  
100K MΩ min. or 1000 MΩ - µF min., whichever is less  
10K MΩ min. or 100 MΩ - µF min., whichever is less  
Insulation Resistance (+25ꢁC, at 500 VDC)  
Insulation Resistance (+125ꢁC, at 500 VDC)  
Dielectric Strength  
Minimum 120ꢀ rated voltage for 5 seconds at 50 mA max. current  
HIGH VOLTAGE C0G CAPACITANCE VALUES  
VOLTAGE  
min.  
0805  
10pF  
1206  
1210  
1808  
1812  
1825  
2220  
2225  
3640  
10 pF  
1200 pF  
10 pF  
560 pF  
10 pF  
270 pF  
10 pF  
120 pF  
100 pF  
2700 pF  
10 pF  
1500 pF  
10 pF  
680 pF  
10 pF  
270 pF  
100 pF  
3300 pF  
100 pF  
2200 pF  
10 pF  
820 pF  
10 pF  
330 pF  
10 pF  
180 pF  
10 pF  
120 pF  
10 pF  
47 pF  
100 pF  
5600 pF  
100 pF  
3300 pF  
10 pF  
1000 pF  
0.012 µF  
100 pF  
8200 pF  
100 pF  
4700 pF  
100 pF  
1800 pF  
10 pF  
1000 pF  
0.012 µF  
1000 pF  
0.010 µF  
100 pF  
4700 pF  
100 pF  
2200 pF  
100 pF  
1500 pF  
10 pF  
1000 pF  
0.018 µF  
1000 pF  
0.010 µF  
100 pF  
5600 pF  
100 pF  
2700 pF  
100 pF  
1800 pF  
10 pF  
1000 pF  
0.047 µF  
1000 pF  
0.022 µF  
100 pF  
600/630  
1000  
1500  
2000  
2500  
3000  
4000  
5000  
max.  
min.  
max.  
min.  
max.  
min.  
max.  
min.  
max.  
min.  
max.  
min.  
max.  
min.  
max.  
330pF  
10pF  
180pF  
1800 pF  
10 pF  
0.010 µF  
100 pF  
1000 pF  
10 pF  
6800 pF  
100 pF  
470 pF  
10 pF  
1200 pF  
10 pF  
3900 pF  
100 pF  
330 pF  
10 pF  
820 pF  
10 pF  
1000 pF  
10 pF  
1200 pF  
10 pF  
2700 pF  
100 pF  
150 pF  
330 pF  
470 pF  
10 pF  
560 pF  
10 pF  
1200 pF  
10 pF  
220 pF  
270 pF  
820 pF  
X7R Dielectric  
Performance Characteristics  
Capacitance Range  
10 pF to 0.56 µF (25ꢁC, 1.0 0.2 Vrms at 1kHz)  
10ꢀ; 20ꢀ; +80ꢀ, -20ꢀ  
Capacitance Tolerances  
Dissipation Factor  
2.5ꢀ max. (+25ꢁC, 1.0 0.2 Vrms, 1kHz)  
-55ꢁC to +125ꢁC  
Operating Temperature Range  
Temperature Characteristic  
Voltage Ratings  
15ꢀ (0 VDC)  
600, 630, 1000, 1500, 2000, 2500, 3000, 4000 & 5000 VDC (+125ꢁC)  
100K MΩ min. or 1000 MΩ - µF min., whichever is less  
10K MΩ min. or 100 MΩ - µF min., whichever is less  
Insulation Resistance (+25ꢁC, at 500 VDC)  
Insulation Resistance (+125ꢁC, at 500 VDC)  
Dielectric Strength  
Minimum 120ꢀ rated voltage for 5 seconds at 50 mA max. current  
HIGH VOLTAGE X7R MAXIMUM CAPACITANCE VALUES  
VOLTAGE  
0805  
1206  
1210  
1808  
1812  
1825  
2220  
2225  
3640  
min.  
100pF  
6800pF  
100pF  
1500pF  
1000 pF  
0.022 µF  
100 pF  
1000 pF  
0.056 µF  
1000 pF  
0.015 µF  
100 pF  
4700 pF  
6800 pF  
100 pF  
3000 pF  
3900 pF  
1000 pF  
0.056 µF  
1000 pF  
0.018 µF  
100 pF  
1000 pF  
0.100 µF  
1000 pF  
0.027 µF  
100 pF  
0.012 µF  
0.015 µF  
100 pF  
4700 pF  
8200 pF  
10 pF  
0.010 µF  
0.180 µF  
1000 pF  
0.100 µF  
1000 pF  
0.033 µF  
0.056 µF  
100 pF  
0.010 µF  
0.027 µF  
100 pF  
6800 pF  
0.015 µF  
100 pF  
4700 pF  
0.012 µF  
0.010 µF  
0.220 µF  
1000 pF  
0.100 µF  
1000 pF  
0.039 µF  
0.056 µF  
1000 pF  
0.010 µF  
0.027 µF  
100 pF  
8200 pF  
0.018 µF  
100 pF  
4700 µF  
0.012 µF  
0.010 µF  
0.220 µF  
1000 pF  
0.100 µF  
1000 pF  
0.047 µF  
0.068 µF  
1000 pF  
0.022 µF  
0.033 µF  
100 pF  
0.010 µF  
0.022 µF  
100 pF  
6800 pF  
0.015 µF  
0.010 µF  
0.560 µF  
0.010 µF  
0.220 µF  
1000 pF  
0.100 µF  
600/630  
max.  
min.  
max.  
min.  
max.  
1000  
6800 pF  
100 pF  
1500  
2700 pF  
6800 pF  
Development  
min.  
10 pF  
1500 pF  
100 pF  
2700 pF  
3900 pF  
10 pF  
1800 pF  
2200 pF  
10 pF  
1500 pF  
1800 pF  
1000 pF  
0.027 µF  
2000  
max.  
Development  
min.  
1000 pF  
0.022 µF  
2500  
max.  
3300 pF  
5600 pF  
10 pF  
Development  
min.  
1000 pF  
0.018 µF  
3000  
max.  
2200 pF  
4700 pF  
Development  
min.  
100 pF  
6800 pF  
100 pF  
4000  
max.  
min.  
max.  
5000  
3300 pF  
74  
High Voltage MLC Chips  
Tin/Lead Termination “B”  
For 600V to 5000V Application  
AVX Corporation will support those customers for commercial and  
military Multilayer Ceramic Capacitors with a termination consisting of  
5ꢀ minimum lead. This termination is indicated by the use of a “B” in  
the 12th position of the AVX Catalog Part Number. This fulfills AVX’s  
commitment to providing a full range of products to our customers. AVX  
has provided in the following pages, a full range of values that we are  
offering in this “B” termination.  
Larger physical sizes than normally encountered chips are used to make  
high voltage MLC chip product. Special precautions must be taken in  
applying these chips in surface mount assemblies. The temperature  
gradient during heating or cooling cycles should not exceed 4ºC per  
second. The preheat temperature must be within 50ºC of the peak  
temperature reached by the ceramic bodies through the soldering  
process. Chip sizes 1210 and larger should be reflow soldered only.  
Capacitors may require protective surface coating to prevent external  
arcing.  
NEW 630V RANGE  
HOW TO ORDER  
LD08  
A
A
271  
K
A
B
1
A
AVX  
Voltage  
600V/630V = C  
1000V = A  
1500V = S  
2000V = G  
2500V = W  
3000V = H  
4000V = J  
Temperature Capacitance Code  
Capacitance  
Tolerance  
Test  
Level  
A = Standard  
Termination  
B = 5ꢀ Min Pb 1 = 7" Reel  
3 = 13" Reel  
Packaging Special Code  
Style  
Coefficient  
C0G = A  
X7R = C  
(2 significant digits  
+ no. of zeros)  
Examples:  
A = Standard  
LD05 - 0805  
LD06 - 1206  
LD10 - 1210  
LD08 - 1808  
LD12 - 1812  
LD13 - 1825  
LD20 - 2220  
LD14 - 2225  
LD40 - 3640  
C0G: J = 5ꢀ  
K = 10ꢀ  
M = 20ꢀ  
X7R: K = 10ꢀ  
M = 20ꢀ  
9 = Bulk  
10 pF = 100  
100 pF = 101  
1,000 pF = 102  
22,000 pF = 223  
220,000 pF = 224  
1 µF =105  
Z = +80ꢀ, -20ꢀ  
5000V = K  
Notes: Capacitors with X7R dielectrics are not intended for applications across AC supply mains or AC line filtering with polarity reversal. Contact plant for recommendations.  
Contact factory for availability of Termination and Tolerance options for Specific Part Numbers.  
W
L
T
t
DIMENSIONS  
millimeters (inches)  
SIZE  
LD05 (0805)  
LD06 (1206)  
LD10* (1210) LD08* (1808) LD12* (1812) LD13* (1825) LD20* (2220) LD25* (2225) LD40* (3640)  
(L) Length  
2.01 0.20  
3.20 0.20  
3.20 0.20  
4.57 0.25  
4.50 0.30  
4.50 0.30  
5.70 0.40  
5.72 0.25  
9.14 0.25  
(0.079 0.008) (0.126 0.008) (0.126 0.008) (0.180 0.010) (0.177 0.012) (0.177 0.012) (0.224 0.016) (0.225 0.010) (0.360 0.010)  
1.25 0.20 1.60 0.20 2.50 0.20 2.03 0.25 3.20 0.20 6.40 0.30 5.00 0.40 6.35 0.25 10.2 0.25  
(0.049 0.008) (0.063 0.008) (0.098 0.008) (0.080 0.010) (0.126 0.008) (0.252 0.012) (0.197 0.016) (0.250 0.010) (0.400 0.010)  
(W) Width  
(T) Thickness  
Max.  
1.30  
(0.051)  
1.52  
(0.060)  
1.70  
(0.067)  
2.03  
(0.080)  
2.54  
(0.100)  
2.54  
(0.100)  
3.30  
(0.130)  
2.54  
(0.100)  
2.54  
(0.100)  
(t) terminal min.  
0.50 0.25  
0.25 (0.010)  
0.25 (0.010)  
0.75 (0.030)  
0.25 (0.010)  
1.02 (0.040)  
0.25 (0.010)  
1.02 (0.040)  
0.25 (0.010)  
1.02 (0.040)  
0.25 (0.010)  
1.02 (0.040)  
0.25 (0.010)  
1.02 (0.040)  
0.76 (0.030)  
1.52 (0.060)  
max. (0.020 0.010) 0.75 (0.030)  
* Reflow soldering only.  
75  
High Voltage MLC Chips  
Tin/Lead Termination “B”  
For 600V to 5000V Application  
C0G Dielectric  
Performance Characteristics  
Capacitance Range  
10 pF to 0.047 µF  
(25ꢁC, 1.0 0.2 Vrms at 1kHz, for 1000 pF use 1 MHz)  
Capacitance Tolerances  
5ꢀ, 10ꢀ, 20ꢀ  
Dissipation Factor  
0.1ꢀ max. (+25ꢁC, 1.0 0.2 Vrms, 1kHz, for 1000 pF use 1 MHz)  
-55ꢁC to +125ꢁC  
0 30 ppm/ꢁC (0 VDC)  
600, 630, 1000, 1500, 2000, 2500, 3000, 4000 & 5000 VDC (+125ꢁC)  
100K MΩ min. or 1000 MΩ - µF min., whichever is less  
10K MΩ min. or 100 MΩ - µF min., whichever is less  
Minimum 120ꢀ rated voltage for 5 seconds at 50 mA max. current  
Operating Temperature Range  
Temperature Characteristic  
Voltage Ratings  
Insulation Resistance (+25ꢁC, at 500 VDC)  
Insulation Resistance (+125ꢁC, at 500 VDC)  
Dielectric Strength  
HIGH VOLTAGE C0G CAPACITANCE VALUES  
VOLTAGE LD05 (0805) LD06 (1206) LD10 (1210) LD08 (1808) LD12 (1812) LD13 (1825) LD20 (2220) LD14 (2225) LD40 (3640)  
min.  
max.  
min.  
max.  
min.  
max.  
min.  
max.  
min.  
max.  
min.  
max.  
min.  
max.  
min.  
max.  
10pF  
330pF  
10pF  
180pF  
10 pF  
1200 pF  
10 pF  
560 pF  
10 pF  
270 pF  
10 pF  
120 pF  
100 pF  
2700 pF  
10 pF  
1500 pF  
10 pF  
680 pF  
10 pF  
270 pF  
100 pF  
3300 pF  
100 pF  
2200 pF  
10 pF  
820 pF  
10 pF  
330 pF  
10 pF  
180 pF  
10 pF  
120 pF  
10 pF  
47 pF  
100 pF  
5600 pF  
100 pF  
3300 pF  
10 pF  
1000 pF  
0.012 µF  
100 pF  
8200 pF  
100 pF  
4700 pF  
100 pF  
1800 pF  
10 pF  
1000 pF  
0.012 µF  
1000 pF  
0.010 µF  
100 pF  
4700 pF  
100 pF  
2200 pF  
100 pF  
1500 pF  
10 pF  
1000 pF  
0.018 µF  
1000 pF  
0.010 µF  
100 pF  
5600 pF  
100 pF  
2700 pF  
100 pF  
1800 pF  
10 pF  
1000 pF  
0.047 µF  
1000 pF  
0.022 µF  
100 pF  
600/630  
1000  
1500  
2000  
2500  
3000  
4000  
5000  
1800 pF  
10 pF  
0.010 µF  
100 pF  
1000 pF  
10 pF  
6800 pF  
100 pF  
470 pF  
10 pF  
1200 pF  
10 pF  
3900 pF  
100 pF  
330 pF  
10 pF  
820 pF  
10 pF  
1000 pF  
10 pF  
1200 pF  
10 pF  
2700 pF  
100 pF  
150 pF  
330 pF  
470 pF  
10 pF  
220 pF  
560 pF  
10 pF  
270 pF  
1200 pF  
10 pF  
820 pF  
X7R Dielectric  
Performance Characteristics  
Capacitance Range  
Capacitance Tolerances  
Dissipation Factor  
Operating Temperature Range  
Temperature Characteristic  
Voltage Ratings  
10 pF to 0.56 µF (25ꢁC, 1.0 0.2 Vrms at 1kHz)  
10ꢀ; 20ꢀ; +80ꢀ, -20ꢀ  
2.5ꢀ max. (+25ꢁC, 1.0 0.2 Vrms, 1kHz)  
-55ꢁC to +125ꢁC  
15ꢀ (0 VDC)  
600, 630, 1000, 1500, 2000, 2500, 3000, 4000 & 5000 VDC (+125ꢁC)  
Insulation Resistance (+25ꢁC, at 500 VDC)  
Insulation Resistance (+125ꢁC, at 500 VDC)  
Dielectric Strength  
100K MΩ min. or 1000 MΩ - µF min., whichever is less  
10K MΩ min. or 100 MΩ - µF min., whichever is less  
Minimum 120ꢀ rated voltage for 5 seconds at 50 mA max. current  
HIGH VOLTAGE X7R MAXIMUM CAPACITANCE VALUES  
VOLTAGE LD05 (0805) LD06 (1206) LD10 (1210) LD08 (1808) LD12 (1812) LD13 (1825) LD20 (2220) LD14 (2225) LD40 (3640)  
min.  
max.  
min.  
100pF  
6800pF  
100pF  
1500pF  
1000 pF  
0.022 µF  
100 pF  
1000 pF  
0.056 µF  
1000 pF  
0.015 µF  
100 pF  
4700 pF  
6800 pF  
100 pF  
3300 pF  
3900 pF  
1000 pF  
0.056 µF  
1000 pF  
0.018 µF  
100 pF  
1000 pF  
0.100 µF  
1000 pF  
0.027 µF  
100 pF  
0.012 µF  
0.015 µF  
100 pF  
4700 pF  
8200 pF  
10 pF  
0.010 µF  
0.180 µF  
1000 pF  
0.100 µF  
1000 pF  
0.033 µF  
0.056 µF  
100 pF  
0.010 µF  
0.027 µF  
100 pF  
6800 pF  
0.015 µF  
100 pF  
4700 pF  
0.012 µF  
0.010 µF  
0.220 µF  
1000 pF  
0.100 µF  
1000 pF  
0.039 µF  
0.056 µF  
1000 pF  
0.010 µF  
0.027 µF  
100 pF  
8200 pF  
0.018 µF  
100 pF  
4700 µF  
0.012 µF  
0.010 µF  
0.220 µF  
1000 pF  
0.100 µF  
1000 pF  
0.047 µF  
0.068 µF  
1000 pF  
0.022 µF  
0.033 µF  
100 pF  
0.010 µF  
0.022 µF  
100 pF  
6800 pF  
0.015 µF  
0.010 µF  
0.560 µF  
0.010 µF  
0.220 µF  
1000 pF  
0.100 µF  
600/630  
1000  
max.  
min.  
6800 pF  
100 pF  
1500  
max.  
2700 pF  
6800 pF  
Development  
min.  
10 pF  
1500 pF  
100 pF  
2700 pF  
3900 pF  
10 pF  
1800 pF  
2200 pF  
10 pF  
1500 pF  
1800 pF  
1000 pF  
0.027 µF  
2000  
max.  
Development  
min.  
1000 pF  
0.022 µF  
2500  
max.  
3300 pF  
5600 pF  
10 pF  
Development  
min.  
1000 pF  
0.018 µF  
3000  
max.  
2200 pF  
4700 pF  
Development  
min.  
100 pF  
6800 pF  
100 pF  
4000  
max.  
min.  
5000  
max.  
3300 pF  
76  
MIL-PRF-55681/Chips  
Part Number Example  
CDR01 thru CDR06  
MILITARY DESIGNATION PER MIL-PRF-55681  
Part Number Example  
CDR01 BP 101  
B
K
S
M
L
W
D
t
MIL Style  
Voltage-temperature  
Limits  
Capacitance  
T
Rated Voltage  
Capacitance Tolerance  
Termination Finish  
Failure Rate  
NOTE: Contact factory for availability of Termination and Tolerance Options for  
Specific Part Numbers.  
MIL Style: CDR01, CDR02, CDR03, CDR04, CDR05,  
Termination Finish:  
CDR06  
M = Palladium Silver  
N = Silver Nickel Gold  
S = Solder-coated  
U = Base Metallization/Barrier  
Metal/Solder Coated*  
W = Base Metallization/Barrier  
Metal/Tinned (Tin or Tin/  
Lead Alloy)  
Voltage Temperature Limits:  
BP = 0 30 ppm/ꢁC without voltage; 0 30 ppm/ꢁC with  
rated voltage from -55ꢁC to +125ꢁC  
BX = 15ꢀ without voltage; +15 –25ꢀ with rated voltage  
from -55ꢁC to +125ꢁC  
*Solder shall have a melting point of 200ꢁC or less.  
Failure Rate Level: M = 1.0ꢀ, P = .1ꢀ, R = .01ꢀ,  
Capacitance: Two digit figures followed by multiplier  
(number of zeros to be added) e.g., 101 = 100 pF  
S = .001ꢀ  
Packaging: Bulk is standard packaging. Tape and reel  
per RS481 is available upon request.  
Rated Voltage: A = 50V, B = 100V  
Capacitance Tolerance: J 5ꢀ, K 10ꢀ, M 20ꢀ  
CROSS REFERENCE: AVX/MIL-PRF-55681/CDR01 THRU CDR06*  
Thickness (T)  
D
Termination Band (t)  
Per  
AVX  
Length (L)  
Width (W)  
MIL-PRF-55681 Style  
Max.  
Min.  
.020  
.020  
.020  
.020  
Max.  
Min.  
.030  
Max.  
Min.  
.010  
.010  
.010  
.010  
CDR01  
CDR02  
CDR03  
CDR04  
0805 .080 .015 .050 .015 .055  
1805 .180 .015 .050 .015 .055  
1808 .180 .015 .080 .018 .080  
1812 .180 .015 .125 .015 .080  
.030  
.030  
.030  
+.020  
-.015  
+.020  
-.015  
CDR05  
1825 .180  
.250  
.080  
.020  
.020  
.030  
.030  
.010  
.010  
CDR06  
2225 .225 .020 .250 .020 .080  
*For CDR11, 12, 13, and 14 see AVX Microwave Chip Capacitor Catalog  
77  
MIL-PRF-55681/Chips  
Military Part Number Identification  
CDR01 thru CDR06  
CDR01 thru CDR06 to MIL-PRF-55681  
Military  
Type  
Designation  
Rated temperature WVDC  
and voltage-  
temperature limits  
Military  
Type  
Designation  
Rated temperature WVDC  
and voltage-  
temperature limits  
Capacitance Capacitance  
Capacitance Capacitance  
in pF  
tolerance  
in pF  
tolerance  
AVX Style 0805/CDR01  
AVX Style 1808/CDR03  
CDR01BP100B---  
CDR01BP120B---  
CDR01BP150B---  
CDR01BP180B---  
CDR01BP220B---  
10  
12  
15  
18  
22  
J,K  
J
J,K  
J
BP  
BP  
BP  
BP  
BP  
100  
100  
100  
100  
100  
CDR03BP331B---  
CDR03BP391B---  
CDR03BP471B---  
CDR03BP561B---  
CDR03BP681B---  
330  
390  
470  
560  
680  
J,K  
J
J,K  
J
BP  
BP  
BP  
BP  
BP  
100  
100  
100  
100  
100  
J,K  
J,K  
CDR01BP270B---  
CDR01BP330B---  
CDR01BP390B---  
CDR01BP470B---  
CDR01BP560B---  
27  
33  
39  
47  
56  
J
J,K  
J
J,K  
J
BP  
BP  
BP  
BP  
BP  
100  
100  
100  
100  
100  
CDR03BP821B--  
CDR03BP102B---  
CDR03BX123B--  
CDR03BX153B---  
CDR03BX183B---  
820  
1000  
12,000  
15,000  
18,000  
J
J,K  
K
K,M  
K
BP  
BP  
BX  
BX  
BX  
100  
100  
100  
100  
100  
CDR01BP680B---  
CDR01BP820B---  
CDR01BP101B---  
CDR01B--121B---  
CDR01B--151B---  
68  
82  
100  
120  
150  
J,K  
J
J,K  
J,K  
J,K  
BP  
BP  
BP  
BP,BX  
BP,BX  
100  
100  
100  
100  
100  
CDR03BX223B---  
CDR03BX273B---  
CDR03BX333B---  
CDR03BX393A---  
CDR03BX473A---  
22,000  
27,000  
33,000  
39,000  
47,000  
K,M  
K
K,M  
K
BX  
BX  
BX  
BX  
BX  
100  
100  
100  
50  
K,M  
50  
CDR01B--181B---  
CDR01BX221B---  
CDR01BX271B---  
CDR01BX331B---  
CDR01BX391B---  
180  
220  
270  
330  
390  
J,K  
K,M  
K
K,M  
K
BP,BX  
BX  
BX  
BX  
BX  
100  
100  
100  
100  
100  
CDR03BX563A---  
CDR03BX683A---  
56,000  
68,000  
K
K,M  
BX  
BX  
50  
50  
AVX Style 1812/CDR04  
CDR04BP122B---  
CDR04BP152B---  
CDR04BP182B---  
CDR04BP222B---  
CDR04BP272B---  
1200  
1500  
1800  
2200  
2700  
J
J,K  
J
J,K  
J
BP  
BP  
BP  
BP  
BP  
100  
100  
100  
100  
100  
CDR01BX471B---  
CDR01BX561B---  
CDR01BX681B---  
CDR01BX821B---  
CDR01BX102B---  
470  
560  
680  
820  
1000  
K,M  
K
K,M  
K
BX  
BX  
BX  
BX  
BX  
100  
100  
100  
100  
100  
K,M  
CDR04BP332B---  
CDR04BX393B---  
CDR04BX473B---  
CDR04BX563B---  
CDR04BX823A---  
3300  
J,K  
K
K,M  
K
BP  
BX  
BX  
BX  
BX  
100  
100  
100  
100  
50  
CDR01BX122B---  
CDR01BX152B---  
CDR01BX182B---  
CDR01BX222B---  
CDR01BX272B---  
1200  
1500  
1800  
2200  
2700  
K
K,M  
K
K,M  
K
BX  
BX  
BX  
BX  
BX  
100  
100  
100  
100  
100  
39,000  
47,000  
56,000  
82,000  
K
CDR04BX104A---  
CDR04BX124A---  
CDR04BX154A---  
CDR04BX184A---  
100,000  
120,000  
150,000  
180,000  
K,M  
K
K,M  
K
BX  
BX  
BX  
BX  
50  
50  
50  
50  
CDR01BX332B---  
CDR01BX392A---  
CDR01BX472A---  
3300  
3900  
4700  
K,M  
K
K,M  
BX  
BX  
BX  
100  
50  
50  
AVX Style 1805/CDR02  
AVX Style 1825/CDR05  
CDR02BP221B---  
CDR02BP271B---  
CDR02BX392B---  
CDR02BX472B---  
CDR02BX562B---  
220  
270  
3900  
4700  
5600  
J,K  
J
K
K,M  
K
BP  
BP  
BX  
BX  
BX  
100  
100  
100  
100  
100  
CDR05BP392B---  
CDR05BP472B---  
CDR05BP562B---  
CDR05BX683B---  
CDR05BX823B---  
3900  
4700  
5600  
68,000  
82,000  
J,K  
J,K  
J,K  
K,M  
K
BP  
BP  
BP  
BX  
BX  
100  
100  
100  
100  
100  
CDR02BX682B---  
CDR02BX822B---  
CDR02BX103B---  
CDR02BX123A---  
CDR02BX153A---  
6800  
8200  
10,000  
12,000  
15,000  
K,M  
K
K,M  
K
BX  
BX  
BX  
BX  
BX  
100  
100  
100  
50  
CDR05BX104B---  
CDR05BX124B---  
CDR05BX154B---  
CDR05BX224A---  
CDR05BX274A---  
100,000  
120,000  
150,000  
220,000  
270,000  
K,M  
K
K,M  
K,M  
K
BX  
BX  
BX  
BX  
BX  
100  
100  
100  
50  
K,M  
50  
50  
CDR02BX183A---  
CDR02BX223A---  
18,000  
22,000  
K
K,M  
BX  
BX  
50  
50  
CDR05BX334A---  
330,000  
K,M  
BX  
50  
Add appropriate failure rate  
Add appropriate termination finish  
Capacitance Tolerance  
AVX Style 2225/CDR06  
CDR06BP682B---  
CDR06BP822B---  
CDR06BP103B---  
CDR06BX394A---  
CDR06BX474A---  
6800  
8200  
10,000  
390,000  
470,000  
J,K  
J,K  
J,K  
K
BP  
BP  
BP  
BX  
BX  
100  
100  
100  
50  
K,M  
50  
Add appropriate failure rate  
Add appropriate termination finish  
Capacitance Tolerance  
78  
MIL-PRF-55681/Chips  
Part Number Example  
CDR31 thru CDR35  
MILITARY DESIGNATION PER MIL-PRF-55681  
Part Number Example  
(example) CDR31 BP 101  
B
K
S
M
L
W
D
t
MIL Style  
Voltage-temperature  
Limits  
Capacitance  
T
Rated Voltage  
Capacitance Tolerance  
Termination Finish  
Failure Rate  
NOTE: Contact factory for aꢂailability of Termination and Tolerance Options for  
Specific Part Numbers.  
MIL Style: CDR31, CDR32, CDR33, CDR34, CDR35  
Termination Finish:  
M = Palladium Silꢂer  
N = Silꢂer Nickel Gold  
S = Solder-coated  
Y = 100ꢄ Tin  
U = Base MetallizationꢀBarrier  
MetalꢀSolder Coated*  
W = Base MetallizationꢀBarrier  
MetalꢀTinned (Tin or Tinꢀ  
Lead Alloy)  
Voltage Temperature Limits:  
BP = 0 30 ppmꢀ/C ꢁithout ꢂoltageꢃ 0 30 ppmꢀ/C ꢁith  
rated ꢂoltage from -55/C to +125/C  
BX = 15ꢄ ꢁithout ꢂoltageꢃ +15 ꢅ25ꢄ ꢁith rated ꢂoltage  
from -55/C to +125/C  
*Solder shall haꢂe a melting point of 200/C or less.  
Capacitance: To digit figures folloꢁed by multiplier  
(number of zeros to be added) e.g., 101 = 100 pF  
Failure Rate Level: M = 1.0ꢄ, P = .1ꢄ, R = .01ꢄ,  
S = .001ꢄ  
Rated Voltage: A = 50V, B = 100V  
Packaging: Bulk is standard packaging. Tape and reel  
per RS481 is aꢂailable upon request.  
Capacitance Tolerance: B .10 pF, C .25 pF, D .5  
pF, F 1ꢄ, ꢆ 5ꢄ, ꢇ 10ꢄ,  
M
20ꢄ  
CROSS REFERENCE: AVX/MIL-PRF-55681/CDR31 THRU CDR35  
Thickness (T)  
D
Termination Band (t)  
Per MIL-PRF-55681 AVX  
Length (L) Width (W)  
(Metric Sizes)  
Style  
(mm)  
(mm)  
Max. (mm)  
Min. (mm) Max. (mm) Min. (mm)  
CDR31  
CDR32  
CDR33  
CDR34  
CDR35  
0805  
1206  
1210  
1812  
1825  
2.00  
3.20  
3.20  
4.50  
4.50  
1.25  
1.60  
2.50  
3.20  
6.40  
1.3  
1.3  
1.5  
1.5  
1.5  
.50  
.70  
.70  
.70  
.70  
.70  
.30  
.30  
.30  
.30  
.30  
79  
MIL-PRF-55681/Chips  
Military Part Number Identification CDR31  
CDR31 to MIL-PRF-55681/7  
Military  
Type  
Designation 1/  
Rated temperature WVDC  
and voltage-  
temperature limits  
Military  
Type  
Designation 1/  
Rated temperature WVDC  
and voltage-  
temperature limits  
Capacitance Capacitance  
in pF tolerance  
Capacitance Capacitance  
in pF tolerance  
AVX Style 0805/CDR31 (BP)  
AVX Style 0805/CDR31 (BP) cont’d  
CDR31BP1R0B---  
CDR31BP1R1B---  
CDR31BP1R2B---  
CDR31BP1R3B---  
CDR31BP1R5B---  
1.0  
1.1  
1.2  
1.3  
1.5  
B,C  
B,C  
B,C  
B,C  
B,C  
BP  
BP  
BP  
BP  
BP  
100  
100  
100  
100  
100  
CDR31BP101B---  
CDR31BP111B---  
CDR31BP121B---  
CDR31BP131B---  
CDR31BP151B---  
100  
110  
120  
130  
150  
F,J,K  
F,J,K  
F,J,K  
F,J,K  
F,J,K  
BP  
BP  
BP  
BP  
BP  
100  
100  
100  
100  
100  
CDR31BP1R6B---  
CDR31BP1R8B---  
CDR31BP2R0B---  
CDR31BP2R2B---  
CDR31BP2R4B---  
1.6  
1.8  
2.0  
2.2  
2.4  
B,C  
B,C  
B,C  
B,C  
B,C  
BP  
BP  
BP  
BP  
BP  
100  
100  
100  
100  
100  
CDR31BP161B---  
CDR31BP181B---  
CDR31BP201B---  
CDR31BP221B---  
CDR31BP241B---  
160  
180  
200  
220  
240  
F,J,K  
F,J,K  
F,J,K  
F,J,K  
F,J,K  
BP  
BP  
BP  
BP  
BP  
100  
100  
100  
100  
100  
CDR31BP2R7B---  
CDR31BP3R0B---  
CDR31BP3R3B---  
CDR31BP3R6B---  
CDR31BP3R9B---  
2.7  
3.0  
3.3  
3.6  
3.9  
B,C,D  
B,C,D  
B,C,D  
B,C,D  
B,C,D  
BP  
BP  
BP  
BP  
BP  
100  
100  
100  
100  
100  
CDR31BP271B---  
CDR31BP301B---  
CDR31BP331B---  
CDR31BP361B---  
CDR31BP391B---  
270  
300  
330  
360  
390  
F,J,K  
F,J,K  
F,J,K  
F,J,K  
F,J,K  
BP  
BP  
BP  
BP  
BP  
100  
100  
100  
100  
100  
CDR31BP4R3B---  
CDR31BP4R7B---  
CDR31BP5R1B---  
CDR31BP5R6B---  
CDR31BP6R2B---  
4.3  
4.7  
5.1  
5.6  
6.2  
B,C,D  
B,C,D  
B,C,D  
B,C,D  
B,C,D  
BP  
BP  
BP  
BP  
BP  
100  
100  
100  
100  
100  
CDR31BP431B---  
CDR31BP471B---  
CDR31BP511A---  
CDR31BP561A---  
CDR31BP621A---  
430  
470  
510  
560  
620  
F,J,K  
F,J,K  
F,J,K  
F,J,K  
F,J,K  
BP  
BP  
BP  
BP  
BP  
100  
100  
50  
50  
50  
CDR31BP6R8B---  
CDR31BP7R5B---  
CDR31BP8R2B---  
CDR31BP9R1B---  
CDR31BP100B---  
6.8  
7.5  
8.2  
9.1  
10  
B,C,D  
B,C,D  
B,C,D  
B,C,D  
F,J,K  
BP  
BP  
BP  
BP  
BP  
100  
100  
100  
100  
100  
CDR31BP681A---  
680  
F,J,K  
BP  
50  
AVX Style 0805/CDR31 (BX)  
CDR31BX471B---  
CDR31BX561B---  
CDR31BX681B---  
CDR31BX821B---  
CDR31BX102B---  
470  
560  
680  
820  
1,000  
K,M  
K,M  
K,M  
K,M  
K,M  
BX  
BX  
BX  
BX  
BX  
100  
100  
100  
100  
100  
CDR31BP110B---  
CDR31BP120B---  
CDR31BP130B---  
CDR31BP150B---  
CDR31BP160B---  
11  
12  
13  
15  
16  
F,J,K  
F,J,K  
F,J,K  
F,J,K  
F,J,K  
BP  
BP  
BP  
BP  
BP  
100  
100  
100  
100  
100  
CDR31BX122B---  
CDR31BX152B---  
CDR31BX182B---  
CDR31BX222B---  
CDR31BX272B---  
1,200  
1,500  
1,800  
2,200  
2,700  
K,M  
K,M  
K,M  
K,M  
K,M  
BX  
BX  
BX  
BX  
BX  
100  
100  
100  
100  
100  
CDR31BP180B---  
CDR31BP200B---  
CDR31BP220B---  
CDR31BP240B---  
CDR31BP270B---  
18  
20  
22  
24  
27  
F,J,K  
F,J,K  
F,J,K  
F,J,K  
F,J,K  
BP  
BP  
BP  
BP  
BP  
100  
100  
100  
100  
100  
CDR31BX332B---  
CDR31BX392B---  
CDR31BX472B---  
CDR31BX562A---  
CDR31BX682A---  
3,300  
3,900  
4,700  
5,600  
6,800  
K,M  
K,M  
K,M  
K,M  
K,M  
BX  
BX  
BX  
BX  
BX  
100  
100  
100  
50  
CDR31BP300B---  
CDR31BP330B---  
CDR31BP360B---  
CDR31BP390B---  
CDR31BP430B---  
30  
33  
36  
39  
43  
F,J,K  
F,J,K  
F,J,K  
F,J,K  
F,J,K  
BP  
BP  
BP  
BP  
BP  
100  
100  
100  
100  
100  
50  
CDR31BX822A---  
CDR31BX103A---  
CDR31BX123A---  
CDR31BX153A---  
CDR31BX183A---  
8,200  
10,000  
12,000  
15,000  
18,000  
K,M  
K,M  
K,M  
K,M  
K,M  
BX  
BX  
BX  
BX  
BX  
50  
50  
50  
50  
50  
CDR31BP470B---  
CDR31BP510B---  
CDR31BP560B---  
CDR31BP620B---  
CDR31BP680B---  
47  
51  
56  
62  
68  
F,J,K  
F,J,K  
F,J,K  
F,J,K  
F,J,K  
BP  
BP  
BP  
BP  
BP  
100  
100  
100  
100  
100  
CDR31BP750B---  
CDR31BP820B---  
CDR31BP910B---  
75  
82  
91  
F,J,K  
F,J,K  
F,J,K  
BP  
BP  
BP  
100  
100  
100  
Add appropriate failure rate  
Add appropriate termination finish  
Capacitance Tolerance  
Add appropriate failure rate  
Add appropriate termination finish  
Capacitance Tolerance  
1/ The complete part number will include additional symbols to indicate capacitance  
tolerance, termination and failure rate level.  
80  
MIL-PRF-55681/Chips  
Military Part Number Identification CDR32  
CDR32 to MIL-PRF-55681/8  
Military  
Type  
Designation 1/  
Rated temperature WVDC  
and voltage-  
temperature limits  
Military  
Type  
Designation 1/  
Rated temperature WVDC  
and voltage-  
temperature limits  
Capacitance Capacitance  
in pF tolerance  
Capacitance Capacitance  
in pF tolerance  
AVX Style 1206/CDR32 (BP)  
AVX Style 1206/CDR32 (BP) cont’d  
CDR32BP1R0B---  
CDR32BP1R1B---  
CDR32BP1R2B---  
CDR32BP1R3B---  
CDR32BP1R5B---  
1.0  
1.1  
1.2  
1.3  
1.5  
B,C  
B,C  
B,C  
B,C  
B,C  
BP  
BP  
BP  
BP  
BP  
100  
100  
100  
100  
100  
CDR32BP101B---  
CDR32BP111B---  
CDR32BP121B---  
CDR32BP131B---  
CDR32BP151B---  
100  
110  
120  
130  
150  
F,J,K  
F,J,K  
F,J,K  
F,J,K  
F,J,K  
BP  
BP  
BP  
BP  
BP  
100  
100  
100  
100  
100  
CDR32BP1R6B---  
CDR32BP1R8B---  
CDR32BP2R0B---  
CDR32BP2R2B---  
CDR32BP2R4B---  
1.6  
1.8  
2.0  
2.2  
2.4  
B,C  
B,C  
B,C  
B,C  
B,C  
BP  
BP  
BP  
BP  
BP  
100  
100  
100  
100  
100  
CDR32BP161B---  
CDR32BP181B---  
CDR32BP201B---  
CDR32BP221B---  
CDR32BP241B---  
160  
180  
200  
220  
240  
F,J,K  
F,J,K  
F,J,K  
F,J,K  
F,J,K  
BP  
BP  
BP  
BP  
BP  
100  
100  
100  
100  
100  
CDR32BP2R7B---  
CDR32BP3R0B---  
CDR32BP3R3B---  
CDR32BP3R6B---  
CDR32BP3R9B---  
2.7  
3.0  
3.3  
3.6  
3.9  
B,C,D  
B,C,D  
B,C,D  
B,C,D  
B,C,D  
BP  
BP  
BP  
BP  
BP  
100  
100  
100  
100  
100  
CDR32BP271B---  
CDR32BP301B---  
CDR32BP331B---  
CDR32BP361B---  
CDR32BP391B---  
270  
300  
330  
360  
390  
F,J,K  
F,J,K  
F,J,K  
F,J,K  
F,J,K  
BP  
BP  
BP  
BP  
BP  
100  
100  
100  
100  
100  
CDR32BP4R3B---  
CDR32BP4R7B---  
CDR32BP5R1B---  
CDR32BP5R6B---  
CDR32BP6R2B---  
4.3  
4.7  
5.1  
5.6  
6.2  
B,C,D  
B,C,D  
B,C,D  
B,C,D  
B,C,D  
BP  
BP  
BP  
BP  
BP  
100  
100  
100  
100  
100  
CDR32BP431B---  
CDR32BP471B---  
CDR32BP511B---  
CDR32BP561B---  
CDR32BP621B---  
430  
470  
510  
560  
620  
F,J,K  
F,J,K  
F,J,K  
F,J,K  
F,J,K  
BP  
BP  
BP  
BP  
BP  
100  
100  
100  
100  
100  
CDR32BP6R8B---  
CDR32BP7R5B---  
CDR32BP8R2B---  
CDR32BP9R1B---  
CDR32BP100B---  
6.8  
7.5  
8.2  
9.1  
10  
B,C,D  
B,C,D  
B,C,D  
B,C,D  
F,J,K  
BP  
BP  
BP  
BP  
BP  
100  
100  
100  
100  
100  
CDR32BP681B---  
CDR32BP751B---  
CDR32BP821B---  
CDR32BP911B---  
CDR32BP102B---  
680  
750  
820  
910  
1,000  
F,J,K  
F,J,K  
F,J,K  
F,J,K  
F,J,K  
BP  
BP  
BP  
BP  
BP  
100  
100  
100  
100  
100  
CDR32BP110B---  
CDR32BP120B---  
CDR32BP130B---  
CDR32BP150B---  
CDR32BP160B---  
11  
12  
13  
15  
16  
F,J,K  
F,J,K  
F,J,K  
F,J,K  
F,J,K  
BP  
BP  
BP  
BP  
BP  
100  
100  
100  
100  
100  
CDR32BP112A---  
CDR32BP122A---  
CDR32BP132A---  
CDR32BP152A---  
CDR32BP162A---  
1,100  
1,200  
1,300  
1,500  
1,600  
F,J,K  
F,J,K  
F,J,K  
F,J,K  
F,J,K  
BP  
BP  
BP  
BP  
BP  
50  
50  
50  
50  
50  
CDR32BP180B---  
CDR32BP200B---  
CDR32BP220B---  
CDR32BP240B---  
CDR32BP270B---  
18  
20  
22  
24  
27  
F,J,K  
F,J,K  
F,J,K  
F,J,K  
F,J,K  
BP  
BP  
BP  
BP  
BP  
100  
100  
100  
100  
100  
CDR32BP182A---  
CDR32BP202A---  
CDR32BP222A---  
1,800  
2,000  
2,200  
F,J,K  
F,J,K  
F,J,K  
BP  
BP  
BP  
50  
50  
50  
AVX Style 1206/CDR32 (BX)  
CDR32BP300B---  
CDR32BP330B---  
CDR32BP360B---  
CDR32BP390B---  
CDR32BP430B---  
30  
33  
36  
39  
43  
F,J,K  
F,J,K  
F,J,K  
F,J,K  
F,J,K  
BP  
BP  
BP  
BP  
BP  
100  
100  
100  
100  
100  
CDR32BX472B---  
CDR32BX562B---  
CDR32BX682B---  
CDR32BX822B---  
CDR32BX103B---  
4,700  
5,600  
6,800  
8,200  
10,000  
K,M  
K,M  
K,M  
K,M  
K,M  
BX  
BX  
BX  
BX  
BX  
100  
100  
100  
100  
100  
CDR32BP470B---  
CDR32BP510B---  
CDR32BP560B---  
CDR32BP620B---  
CDR32BP680B---  
47  
51  
56  
62  
68  
F,J,K  
F,J,K  
F,J,K  
F,J,K  
F,J,K  
BP  
BP  
BP  
BP  
BP  
100  
100  
100  
100  
100  
CDR32BX123B---  
CDR32BX153B---  
CDR32BX183A---  
CDR32BX223A---  
CDR32BX273A---  
12,000  
15,000  
18,000  
22,000  
27,000  
K,M  
K,M  
K,M  
K,M  
K,M  
BX  
BX  
BX  
BX  
BX  
100  
100  
50  
50  
50  
CDR32BP750B---  
CDR32BP820B---  
CDR32BP910B---  
75  
82  
91  
F,J,K  
F,J,K  
F,J,K  
BP  
BP  
BP  
100  
100  
100  
CDR32BX333A---  
CDR32BX393A---  
33,000  
39,000  
K,M  
K,M  
BX  
BX  
50  
50  
Add appropriate failure rate  
Add appropriate termination finish  
Capacitance Tolerance  
Add appropriate failure rate  
Add appropriate termination finish  
Capacitance Tolerance  
1/ The complete part number will include additional symbols to indicate capacitance  
tolerance, termination and failure rate level.  
81  
MIL-PRF-55681/Chips  
Military Part Number Identification CDR33/34/35  
CDR33/34/35 to MIL-PRF-55681/9/10/11  
Military  
Type  
Designation 1/  
Rated temperature WVDC  
and voltage-  
temperature limits  
Military  
Type  
Designation 1/  
Rated temperature WVDC  
and voltage-  
temperature limits  
Capacitance Capacitance  
in pF tolerance  
Capacitance Capacitance  
in pF tolerance  
AVX Style 1210/CDR33 (BP)  
AVX Style 1812/CDR34 (BX)  
CDR33BP102B---  
CDR33BP112B---  
CDR33BP122B---  
CDR33BP132B---  
CDR33BP152B---  
1,000  
1,100  
1,200  
1,300  
1,500  
F,J,K  
F,J,K  
F,J,K  
F,J,K  
F,J,K  
BP  
BP  
BP  
BP  
BP  
100  
100  
100  
100  
100  
CDR34BX273B---  
CDR34BX333B---  
CDR34BX393B---  
CDR34BX473B---  
CDR34BX563B---  
27,000  
33,000  
39,000  
47,000  
56,000  
K,M  
K,M  
K,M  
K,M  
K,M  
BX  
BX  
BX  
BX  
BX  
100  
100  
100  
100  
100  
CDR33BP162B---  
CDR33BP182B---  
CDR33BP202B---  
CDR33BP222B---  
CDR33BP242A---  
1,600  
1,800  
2,000  
2,200  
2,400  
F,J,K  
F,J,K  
F,J,K  
F,J,K  
F,J,K  
BP  
BP  
BP  
BP  
BP  
100  
100  
100  
100  
50  
CDR34BX104A---  
CDR34BX124A---  
CDR34BX154A---  
CDR34BX184A---  
100,000  
120,000  
150,000  
180,000  
K,M  
K,M  
K,M  
K,M  
BX  
BX  
BX  
BX  
50  
50  
50  
50  
CDR33BP272A---  
CDR33BP302A---  
CDR33BP332A---  
2,700  
3,000  
3,300  
F,J,K  
F,J,K  
F,J,K  
BP  
BP  
BP  
50  
50  
50  
AVX Style 1825/CDR35 (BP)  
CDR35BP472B---  
CDR35BP512B---  
CDR35BP562B---  
CDR35BP622B---  
CDR35BP682B---  
4,700  
5,100  
5,600  
6,200  
6,800  
F,J,K  
F,J,K  
F,J,K  
F,J,K  
F,J,K  
BP  
BP  
BP  
BP  
BP  
100  
100  
100  
100  
100  
AVX Style 1210/CDR33 (BX)  
CDR33BX153B---  
CDR33BX183B---  
CDR33BX223B---  
CDR33BX273B---  
CDR33BX393A---  
15,000  
18,000  
22,000  
27,000  
39,000  
K,M  
K,M  
K,M  
K,M  
K,M  
BX  
BX  
BX  
BX  
BX  
100  
100  
100  
100  
50  
CDR35BP752B---  
CDR35BP822B---  
CDR35BP912B---  
CDR35BP103B---  
CDR35BP113A---  
7,500  
8,200  
9,100  
10,000  
11,000  
F,J,K  
F,J,K  
F,J,K  
F,J,K  
F,J,K  
BP  
BP  
BP  
BP  
BP  
100  
100  
100  
100  
50  
CDR33BX473A---  
CDR33BX563A---  
CDR33BX683A---  
CDR33BX823A---  
CDR33BX104A---  
47,000  
56,000  
68,000  
82,000  
100,000  
K,M  
K,M  
K,M  
K,M  
K,M  
BX  
BX  
BX  
BX  
BX  
50  
50  
50  
50  
50  
CDR35BP123A---  
CDR35BP133A---  
CDR35BP153A---  
CDR35BP163A---  
CDR35BP183A---  
12,000  
13,000  
15,000  
16,000  
18,000  
F,J,K  
F,J,K  
F,J,K  
F,J,K  
F,J,K  
BP  
BP  
BP  
BP  
BP  
50  
50  
50  
50  
50  
AVX Style 1812/CDR34 (BP)  
CDR35BP203A---  
CDR35BP223A---  
20,000  
22,000  
F,J,K  
F,J,K  
BP  
BP  
50  
50  
CDR34BP222B---  
CDR34BP242B---  
CDR34BP272B---  
CDR34BP302B---  
CDR34BP332B---  
2,200  
2,400  
2,700  
3,000  
3,300  
F,J,K  
F,J,K  
F,J,K  
F,J,K  
F,J,K  
BP  
BP  
BP  
BP  
BP  
100  
100  
100  
100  
100  
AVX Style 1825/CDR35 (BX)  
CDR35BX563B---  
CDR35BX683B---  
CDR35BX823B---  
CDR35BX104B---  
CDR35BX124B---  
56,000  
68,000  
82,000  
100,000  
120,000  
K,M  
K,M  
K,M  
K,M  
K,M  
BX  
BX  
BX  
BX  
BX  
100  
100  
100  
100  
100  
CDR34BP362B---  
CDR34BP392B---  
CDR34BP432B---  
CDR34BP472B---  
CDR34BP512A---  
3,600  
3,900  
4,300  
4,700  
5,100  
F,J,K  
F,J,K  
F,J,K  
F,J,K  
F,J,K  
BP  
BP  
BP  
BP  
BP  
100  
100  
100  
100  
50  
CDR35BX154B---  
CDR35BX184A---  
CDR35BX224A---  
CDR35BX274A---  
CDR35BX334A---  
150,000  
180,000  
220,000  
270,000  
330,000  
K,M  
K,M  
K,M  
K,M  
K,M  
BX  
BX  
BX  
BX  
BX  
100  
50  
50  
50  
50  
CDR34BP562A---  
CDR34BP622A---  
CDR34BP682A---  
CDR34BP752A---  
CDR34BP822A---  
5,600  
6,200  
6,800  
7,500  
8,200  
F,J,K  
F,J,K  
F,J,K  
F,J,K  
F,J,K  
BP  
BP  
BP  
BP  
BP  
50  
50  
50  
50  
50  
CDR35BX394A---  
CDR35BX474A---  
390,000  
470,000  
K,M  
K,M  
BX  
BX  
50  
50  
CDR34BP912A---  
CDR34BP103A---  
9,100  
10,000  
F,J,K  
F,J,K  
BP  
BP  
50  
50  
Add appropriate failure rate  
Add appropriate termination finish  
Capacitance Tolerance  
Add appropriate failure rate  
Add appropriate termination finish  
Capacitance Tolerance  
1/ The complete part number will include additional symbols to indicate capacitance  
tolerance, termination and failure rate level.  
82  
Packaging of Chip Components  
Automatic Insertion Packaging  
TAPE & REEL QUANTITIES  
All tape and reel specifications are in compliance with RS481.  
8mm  
12mm  
Paper or Embossed Carrier  
Embossed Only  
0612, 0508, 0805, 1206,  
1210  
1812, 1825  
2220, 2225  
1808  
Paper Only  
0201, 0306, 0402, 0603  
Qty. per Reel/7" Reel  
2,000, 3,000 or 4,000, 10,000, 15,000  
Contact factory for exact quantity  
3,000  
500, 1,000  
Contact factory for exact quantity  
Qty. per Reel/13" Reel  
5,000, 10,000, 50,000  
Contact factory for exact quantity  
10,000  
4,000  
REEL DIMENSIONS  
Tape  
A
Max.  
B*  
Min.  
D*  
Min.  
N
Min.  
W2  
Max.  
C
W1  
W3  
(1)  
Size  
7.90 Min.  
(0.311)  
8.40 +-01..05  
14.4  
8mm  
(0.331 -+00..0059  
)
)
(0.567)  
10.9 Max.  
(0.429)  
330  
(12.992)  
1.5  
(0.059)  
13.0 +-00..2500  
20.2  
(0.795)  
50.0  
(1.969)  
(0.512+-00..000280  
)
11.9 Min.  
(0.469)  
15.4 Max.  
(0.607)  
12.4 +-02..00  
18.4  
(0.724)  
12mm  
(0.488 -+00..0079  
Metric dimensions will govern.  
English measurements rounded and for reference only.  
(1) For tape sizes 16mm and 24mm (used with chip size 3640) consult EIA RS-481 latest revision.  
83  
Embossed Carrier Configuration  
8 & 12mm Tape Only  
10 PITCHES CUMULATIVE  
TOLERANCE ON TAPE  
0.2mm ( 0.008)  
EMBOSSMENT  
P0  
T2  
T
D0  
P2  
DEFORMATION  
BETWEEN  
EMBOSSMENTS  
Chip Orientation  
E1  
A0  
W
F
E2  
TOP COVER  
TAPE  
B1  
B0  
P1  
K0  
T1  
D
1 FOR COMPONENTS  
CENTER LINES  
OF CAVITY  
S1  
MAX. CAVITY  
SIZE - SEE NOTE 1  
2.00 mm x 1.20 mm AND  
LARGER (0.079 x 0.047)  
B1 IS FOR TAPE READER REFERENCE ONLY  
INCLUDING DRAFT CONCENTRIC AROUND B0  
User Direction of Feed  
8 & 12mm Embossed Tape  
Metric Dimensions Will Govern  
CONSTANT DIMENSIONS  
Tape Size  
D0  
E
P0  
P2  
S1 Min.  
T Max.  
T1  
8mm  
and  
12mm  
1.50 -+00..010  
1.75 0.10  
4.0 0.10  
2.0 0.05  
0.60  
(0.024)  
0.60  
(0.024)  
0.10  
(0.004)  
Max.  
(0.059 -+00..0004  
)
(0.069 0.004) (0.157 0.004) (0.079 0.002)  
VARIABLE DIMENSIONS  
Tape Size  
B1  
Max.  
D1  
Min.  
E2  
Min.  
F
P1  
R
T2  
W
Max.  
A0 B0 K0  
Min.  
See Note 5 See Note 2  
4.35  
1.00  
6.25  
3.50 0.05  
4.00 0.10  
25.0  
2.50 Max.  
(0.098)  
8.30  
8mm  
See Note 1  
See Note 1  
See Note 1  
See Note 1  
(0.171)  
(0.039)  
(0.246) (0.138 0.002) (0.157 0.004)  
(0.984)  
(0.327)  
8.20  
(0.323)  
1.50  
(0.059)  
10.25  
5.50 0.05  
4.00 0.10  
30.0  
(1.181)  
6.50 Max.  
(0.256)  
12.3  
(0.484)  
12mm  
(0.404) (0.217 0.002) (0.157 0.004)  
8mm  
1/2 Pitch  
4.35  
(0.171)  
1.00  
(0.039)  
6.25  
3.50 0.05  
2.00 0.10  
25.0  
(0.984)  
2.50 Max.  
(0.098)  
8.30  
(0.327)  
(0.246) (0.138 0.002) (0.079 0.004)  
12mm  
Double  
Pitch  
8.20  
(0.323)  
1.50  
(0.059)  
10.25  
5.50 0.05  
8.00 0.10  
30.0  
(1.181)  
6.50 Max.  
(0.256)  
12.3  
(0.484)  
(0.404) (0.217 0.002) (0.315 0.004)  
NOTES:  
2. Tape with or without components shall pass around radius “R” without damage.  
1. The cavity defined by A0, B0, and K0 shall be configured to provide the following:  
Surround the component with sufficient clearance such that:  
3. Bar code labeling (if required) shall be on the side of the reel opposite the round sprocket holes.  
Refer to EIA-556.  
a) the component does not protrude beyond the sealing plane of the cover tape.  
b) the component can be removed from the cavity in a vertical direction without mechanical  
restriction, after the cover tape has been removed.  
4. B1 dimension is a reference dimension for tape feeder clearance only.  
5. If P1 = 2.0mm, the tape may not properly index in all tape feeders.  
c) rotation of the component is limited to 20º maximum (see Sketches D & E).  
d) lateral movement of the component is restricted to 0.5mm maximum (see Sketch F).  
Top View, Sketch "F"  
Component Lateral Movements  
0.50mm (0.020)  
Maximum  
0.50mm (0.020)  
Maximum  
84  
Paper Carrier Configuration  
8 & 12mm Tape Only  
10 PITCHES CUMULATIVE  
TOLERANCE ON TAPE  
0.20mm ( 0.008)  
P0  
D0  
P2  
T
E1  
BOTTOM  
COVER  
TAPE  
TOP  
COVER  
TAPE  
F
W
E2  
B0  
G
T1  
T1  
A0  
P1  
CAVITY SIZE  
SEE NOTE 1  
CENTER LINES  
OF CAVITY  
User Direction of Feed  
8 & 12mm Paper Tape  
Metric Dimensions Will Govern  
CONSTANT DIMENSIONS  
Tape Size  
D0  
E
P0  
P2  
T1  
G. Min.  
R Min.  
1.50 -+00..010  
8mm  
and  
12mm  
1.75 0.10  
4.00 0.10  
2.00 0.05  
0.10  
(0.004)  
Max.  
0.75  
(0.030)  
Min.  
25.0 (0.984)  
See Note 2  
Min.  
(0.059 -+00..0004  
)
(0.069 0.004) (0.157 0.004) (0.079 0.002)  
VARIABLE DIMENSIONS  
P1  
Tape Size  
E2 Min.  
F
W
A0 B0  
See Note 1  
T
See Note 4  
8mm  
4.00 0.10  
(0.157 0.004)  
6.25  
(0.246)  
3.50 0.05  
(0.138 0.002)  
8.00 -+00..1300  
(0.315 +-00..000142  
)
1.10mm  
(0.043) Max.  
for Paper Base  
Tape and  
4.00 0.010  
(0.157 0.004)  
10.25  
(0.404)  
5.50 0.05  
(0.217 0.002) (0.472 0.012)  
12.0 0.30  
12mm  
1.60mm  
(0.063) Max.  
for Non-Paper  
Base Compositions  
8mm  
1/2 Pitch  
2.00 0.05  
(0.079 0.002)  
6.25  
(0.246)  
3.50 0.05  
(0.138 0.002)  
8.00 +-00..1300  
(0.315 +-00..000142  
)
12mm  
Double  
Pitch  
8.00 0.10  
(0.315 0.004)  
10.25  
(0.404)  
5.50 0.05  
12.0 0.30  
(0.217 0.002) (0.472 0.012)  
NOTES:  
2. Tape with or without components shall pass around radius “R” without damage.  
1. The cavity defined by A0, B0, and T shall be configured to provide sufficient clearance  
surrounding the component so that:  
3. Bar code labeling (if required) shall be on the side of the reel opposite the sprocket  
holes. Refer to EIA-556.  
a) the component does not protrude beyond either surface of the carrier tape;  
b) the component can be removed from the cavity in a vertical direction without  
mechanical restriction after the top cover tape has been removed;  
c) rotation of the component is limited to 20º maximum (see Sketches A & B);  
d) lateral movement of the component is restricted to 0.5mm maximum  
(see Sketch C).  
4. If P1 = 2.0mm, the tape may not properly index in all tape feeders.  
Top View, Sketch "C"  
Component Lateral  
0.50mm (0.020)  
Maximum  
0.50mm (0.020)  
Maximum  
Bar Code Labeling Standard  
AVX bar code labeling is available and follows latest version of EIA-556  
85  
Bulk Case Packaging  
BENEFITS  
BULK FEEDER  
• Easier handling  
• Smaller packaging volume  
(1/20 of T/R packaging)  
• Easier inventory control  
• Flexibility  
Case  
Cassette  
• Recyclable  
Gate  
Shooter  
CASE DIMENSIONS  
Shutter  
Slider  
12mm  
36mm  
Mounter  
Head  
Expanded Drawing  
110mm  
Chips  
Attachment Base  
CASE QUANTITIES  
Part Size  
0402  
0603  
0805  
1206  
Qty.  
(pcs / cassette)  
10,000 (T=.023")  
8,000 (T=.031")  
6,000 (T=.043")  
5,000 (T=.023")  
4,000 (T=.032")  
3,000 (T=.044")  
80,000  
15,000  
86  
Basic Capacitor Formulas  
I. Capacitance (farads)  
XI. Equivalent Series Resistance (ohms)  
.224 K A  
E.S.R. = (D.F.) (Xc) = (D.F.) / (2 π fC)  
English: C =  
TD  
XII. Power Loss (watts)  
.0884 K A  
Power Loss = (2 π fCV2) (D.F.)  
Metric: C =  
TD  
XIII. KVA (Kilowatts)  
II. Energy stored in capacitors (Joules, watt - sec)  
KVA = 2 π fCV2 x 10-3  
1
E = ⁄  
2
CV2  
XIV. Temperature Characteristic (ppm/°C)  
III. Linear charge of a capacitor (Amperes)  
Ct – C25  
C25 (Tt – 25)  
T.C. =  
x 106  
dV  
dt  
I = C  
XV. Cap Drift (%)  
C1 – C2  
C1  
IV. Total Impedance of a capacitor (ohms)  
Z =ͱ R2S + (X - X )2  
C.D. =  
x 100  
C
L
V. Capacitive Reactance (ohms)  
XVI. Reliability of Ceramic Capacitors  
1
x =  
c
L0  
Vt  
X
Tt  
Y
2 π fC  
=
( ) ( )  
Lt  
Vo  
To  
VI. Inductive Reactance (ohms)  
xL = 2 π fL  
XVII. Capacitors in Series (current the same)  
VII. Phase Angles:  
Any Number:  
1
1
1
1
---  
Ideal Capacitors: Current leads voltage 90ꢁ  
Ideal Inductors: Current lags voltage 90ꢁ  
Ideal Resistors: Current in phase with voltage  
=
+
C
C1  
C2  
C
T
N
C1 C2  
C1 + C2  
VIII. Dissipation Factor (%)  
Two: C =  
T
E.S.R.  
D.F.= tan (loss angle) =  
= (2 πfC) (E.S.R.)  
XVIII. Capacitors in Parallel (voltage the same)  
X
c
C = C1 + C2 --- + C  
T
N
IX. Power Factor (%)  
XIX. Aging Rate  
P.F. = Sine (loss angle) = Cos (phase angle)  
P.F. = (when less than 10ꢀ) = DF  
f
A.R. = ꢀD C/decade of time  
XX. Decibels  
db = 20 log  
X. Quality Factor (dimensionless)  
V1  
V2  
1
Q = Cotan (loss angle) =  
D.F.  
METRIC PREFIXES SYMBOLS  
Pico  
Nano  
Micro  
Milli  
Deci  
Deca  
Kilo  
Mega  
Giga  
Tera  
X 10-12  
X 10-9  
X 10-6  
X 10-3  
X 10-1  
X 10+1  
X 10+3  
X 10+6  
X 10+9  
X 10+12  
K
A
= Dielectric Constant  
= Area  
f
= frequency  
= Inductance  
= Loss angle  
= Phase angle  
Lt  
= Test life  
L
Vt  
Vo  
Tt  
= Test voltage  
TD = Dielectric thickness  
= Operating voltage  
= Test temperature  
= Operating temperature  
V
t
= Voltage  
f
= time  
X & Y = exponent effect of voltage and temp.  
To  
R
= Series Resistance  
Lo  
= Operating life  
s
87  
General Description  
Basic Construction – A multilayer ceramic (MLC)  
capacitor is a monolithic block of ceramic containing two  
sets of offset, interleaved planar electrodes that extend to  
two opposite surfaces of the ceramic dielectric. This simple  
structure requires a considerable amount of sophistication,  
both in material and manufacture, to produce it in the quality  
and quantities needed in today’s electronic equipment.  
Electrode  
Ceramic Layer  
End Terminations  
Terminated  
Edge  
Terminated  
Edge  
Margin  
Electrodes  
Multilayer Ceramic Capacitor  
Figure 1  
Formulations – Multilayer ceramic capacitors are available  
in both Class 1 and Class 2 formulations. Temperature  
compensating formulation are Class 1 and temperature  
stable and general application formulations are classified  
as Class 2.  
Class 2 – EIA Class 2 capacitors typically are based on the  
chemistry of barium titanate and provide a wide range of  
capacitance values and temperature stability. The most  
commonly used Class 2 dielectrics are X7R and Y5V. The  
X7R provides intermediate capacitance values which vary  
only 15ꢀ over the temperature range of -55ꢁC to 125ꢁC. It  
finds applications where stability over a wide temperature  
range is required.  
Class 1 – Class 1 capacitors or temperature compensating  
capacitors are usually made from mixtures of titanates  
where barium titanate is normally not a major part of the  
mix. They have predictable temperature coefficients and  
in general, do not have an aging characteristic. Thus they  
are the most stable capacitor available. The most popular  
Class 1 multilayer ceramic capacitors are C0G (NP0)  
temperature compensating capacitors (negative-positive  
0 ppm/ꢁC).  
The Y5V provides the highest capacitance values and is  
used in applications where limited temperature changes are  
expected. The capacitance value for Y5V can vary from  
22ꢀ to -82ꢀ over the -30ꢁC to 85ꢁC temperature range.  
All Class 2 capacitors vary in capacitance value under the  
influence of temperature, operating voltage (both AC and  
DC), and frequency. For additional information on  
performance changes with operating conditions, consult  
AVX’s software, SpiCap.  
88  
General Description  
Effects of Voltage – Variations in voltage have little effect  
on Class 1 dielectric but does affect the capacitance and  
dissipation factor of Class 2 dielectrics. The application of DC  
voltage reduces both the capacitance and dissipation factor  
while the application of an AC voltage within a reasonable  
range tends to increase both capacitance and dissipation  
|factor readings. If a high enough AC voltage is applied,  
eventually it will reduce capacitance just as a DC voltage will.  
Figure 2 shows the effects of AC voltage.  
Table 1: EIA and MIL Temperature Stable and General  
Application Codes  
EIA CODE  
Percent Capacity Change Over Temperature Range  
RS198  
Temperature Range  
X7  
X6  
X5  
Y5  
Z5  
-55°C to +125°C  
-55°C to +105°C  
-55°C to +85°C  
-30°C to +85°C  
+10°C to +85°C  
Cap. Change vs. A.C. Volts  
X7R  
Code  
Percent Capacity Change  
50  
40  
30  
20  
D
E
F
P
R
S
T
3.3%  
4.7%  
7.5%  
10%  
15%  
22%  
10  
0
+22%, -33%  
+22%, - 56%  
+22%, -82%  
U
V
12.5  
25  
37.5  
50  
EXAMPLE – A capacitor is desired with the capacitance value at 25°C to  
increase no more than 7.5% or decrease no more than 7.5% from  
-30°C to +85°C. EIA Code will be Y5F.  
Volts AC at 1.0 KHz  
Figure 2  
Capacitor specifications specify the AC voltage at which to  
measure (normally 0.5 or 1 VAC) and application of the wrong  
voltage can cause spurious readings. Figure 3 gives the volt-  
age coefficient of dissipation factor for various AC voltages at  
1 kilohertz. Applications of different frequencies will affect the  
percentage changes versus voltages.  
MIL CODE  
Symbol  
Temperature Range  
A
B
C
-55°C to +85°C  
-55°C to +125°C  
-55°C to +150°C  
D.F. vs. A.C. Measurement Volts  
X7R  
Cap. Change  
Zero Volts  
Cap. Change  
Rated Volts  
Symbol  
10.0  
Curve 1 - 100 VDC Rated Capacitor  
Curve 2 - 50 VDC Rated Capacitor  
Curve 3 - 25 VDC Rated Capacitor  
Curve 3  
Curve 2  
R
S
W
X
Y
Z
+15%, -15%  
+22%, -22%  
+22%, -56%  
+15%, -15%  
+30%, -70%  
+20%, -20%  
+15%, -40%  
+22%, -56%  
+22%, -66%  
+15%, -25%  
+30%, -80%  
+20%, -30%  
8.0  
6.0  
4.0  
Curve 1  
2.0  
0
Temperature characteristic is specified by combining range and change  
symbols, for example BR or AW. Specification slash sheets indicate the  
characteristic applicable to a given style of capacitor.  
.5  
1.0  
1.5  
2.0  
2.5  
AC Measurement Volts at 1.0 KHz  
In specifying capacitance change with temperature for Class  
2 materials, EIA expresses the capacitance change over an  
operating temperature range by a 3 symbol code. The first  
symbol represents the cold temperature end of the tempera-  
ture range, the second represents the upper limit of the  
operating temperature range and the third symbol represents  
the capacitance change allowed over the operating temper-  
ature range. Table 1 provides a detailed explanation of the EIA  
system.  
Figure 3  
Typical effect of the application of DC voltage is shown in  
Figure 4. The voltage coefficient is more pronounced for  
higher K dielectrics. These figures are shown for room tem-  
perature conditions. The combination characteristic known as  
voltage temperature limits which shows the effects of rated  
voltage over the operating temperature range is shown in  
Figure 5 for the military BX characteristic.  
89  
General Description  
capacitors and is why re-reading of capacitance after 12 or  
24 hours is allowed in military specifications after dielectric  
strength tests have been performed.  
Typical Cap. Change vs. D.C. Volts  
X7R  
5
0
Typical Curve of Aging Rate  
X7R  
+1.5  
0
-5  
-10  
-15  
-20  
-1.5  
25%  
50%  
Percent Rated Volts  
Figure 4  
75%  
100%  
-3.0  
-4.5  
Typical Cap. Change vs. Temperature  
X7R  
-6.0  
-7.5  
+20  
+10  
0
1
10  
100 1000 10,000 100,000  
Hours  
0VDC  
Characteristic Max. Aging Rate %/Decade  
None  
2
7
C0G (NP0)  
X7R, X5R  
Y5V  
-10  
-20  
-30  
Figure 6  
Effects of Frequency – Frequency affects capacitance and  
impedance characteristics of capacitors. This effect is much  
more pronounced in high dielectric constant ceramic  
formulation than in low K formulations. AVX’s SpiCap  
software generates impedance, ESR, series inductance,  
series resonant frequency and capacitance all as functions  
of frequency, temperature and DC bias for standard chip  
sizes and styles. It is available free from AVX and can be  
downloaded for free from AVX website: www.avx.com.  
-55 -35 -15 +5 +25 +45 +65 +85 +105 +125  
Temperature Degrees Centigrade  
Figure 5  
Effects of Time – Class 2 ceramic capacitors change  
capacitance and dissipation factor with time as well as  
temperature, voltage and frequency. This change with time is  
known as aging. Aging is caused by a gradual re-alignment  
of the crystalline structure of the ceramic and produces an  
exponential loss in capacitance and decrease in dissipation  
factor versus time. A typical curve of aging rate for  
semistable ceramics is shown in Figure 6.  
If a Class 2 ceramic capacitor that has been sitting on the  
shelf for a period of time, is heated above its curie point,  
1
(125ꢁC for 4 hours or 150ꢁC for ⁄  
2
hour will suffice) the part will  
de-age and return to its initial capacitance and dissi-pation  
factor readings. Because the capacitance changes  
rapidly, immediately after de-aging, the basic capacitance  
measurements are normally referred to a time period  
sometime after the de-aging process. Various manufacturers  
use different time bases but the most popular one is one day  
or twenty-four hours after “last heat.” Change in the aging  
curve can be caused by the application of voltage and  
other stresses. The possible changes in capacitance due to  
de-aging by heating the unit explain why capacitance changes  
are allowed after test, such as temperature cycling, moisture  
resistance, etc., in MIL specs. The application of high voltages  
such as dielectric withstanding voltages also tends to de-age  
90  
General Description  
Effects of Mechanical Stress – High “K” dielectric ceramic  
capacitors exhibit some low level piezoelectric reactions  
under mechanical stress. As a general statement, the piezo-  
electric output is higher, the higher the dielectric constant of  
the ceramic. It is desirable to investigate this effect before  
using high “K” dielectrics as coupling capacitors in extremely  
low level applications.  
Energy Stored – The energy which can be stored in a  
capacitor is given by the formula:  
E = 1⁄ CV2  
2
E = energy in joules (watts-sec)  
V = applied voltage  
C = capacitance in farads  
Reliability – Historically ceramic capacitors have been one  
of the most reliable types of capacitors in use today.  
The approximate formula for the reliability of a ceramic  
capacitor is:  
Potential Change – A capacitor is a reactive component  
which reacts against a change in potential across it. This is  
shown by the equation for the linear charge of a capacitor:  
Lo  
Lt  
Vt  
X
Tt  
To  
Y
=
͑ ͑  
͑ ͑  
Vo  
dV  
dt  
Iideal  
=
C
where  
Lo = operating life  
Lt = test life  
Vt = test voltage  
Tt = test temperature and  
To = operating temperature  
in ꢁC  
where  
I = Current  
C = Capacitance  
Vo = operating voltage  
X,Y = see text  
dV/dt = Slope of voltage transition across capacitor  
Thus an infinite current would be required to instantly change  
the potential across a capacitor. The amount of current a  
capacitor can “sink” is determined by the above equation.  
Historically for ceramic capacitors exponent X has been  
considered as 3. The exponent Y for temperature effects  
typically tends to run about 8.  
Equivalent Circuit – A capacitor, as a practical device,  
exhibits not only capacitance but also resistance and  
inductance. A simplified schematic for the equivalent circuit  
is:  
A capacitor is a component which is capable of storing  
electrical energy. It consists of two conductive plates (elec-  
trodes) separated by insulating material which is called the  
dielectric. A typical formula for determining capacitance is:  
C = Capacitance  
L = Inductance  
Rp = Parallel Resistance  
Rs = Series Resistance  
.224 KA  
RP  
C =  
t
C = capacitance (picofarads)  
K = dielectric constant (Vacuum = 1)  
A = area in square inches  
t = separation between the plates in inches  
(thickness of dielectric)  
L
R S  
C
.224 = conversion constant  
Reactance – Since the insulation resistance (Rp) is nor-  
mally very high, the total impedance of a capacitor is:  
(.0884 for metric system in cm)  
Capacitance – The standard unit of capacitance is the  
farad. A capacitor has a capacitance of 1 farad when 1  
coulomb charges it to 1 volt. One farad is a very large unit  
and most capacitors have values in the micro (10-6), nano  
(10-9) or pico (10-12) farad level.  
Z = R2+ (XC - XL )2  
S
ͱ
where  
Z = Total Impedance  
R = Series Resistance  
XCs = Capacitive Reactance =  
1
Dielectric Constant – In the formula for capacitance given  
above the dielectric constant of a vacuum is arbitrarily chosen  
as the number 1. Dielectric constants of other materials are  
then compared to the dielectric constant of a vacuum.  
2 π fC  
XL = Inductive Reactance = 2 π fL  
The variation of a capacitor’s impedance with frequency  
determines its effectiveness in many applications.  
Dielectric Thickness – Capacitance is indirectly proportional  
to the separation between electrodes. Lower voltage require-  
ments mean thinner dielectrics and greater capacitance per  
volume.  
Phase Angle – Power Factor and Dissipation Factor are  
often confused since they are both measures of the loss in  
a capacitor under AC application and are often almost  
identical in value. In a “perfect” capacitor the current in the  
capacitor will lead the voltage by 90ꢁ.  
Area – Capacitance is directly proportional to the area of the  
electrodes. Since the other variables in the equation are  
usually set by the performance desired, area is the easiest  
parameter to modify to obtain a specific capacitance within  
a material group.  
91  
General Description  
di  
dt  
The  
seen in current microprocessors can be as high as  
I (Ideal)  
0.3 A/ns, and up to 10A/ns. At 0.3 A/ns, 100pH of parasitic  
inductance can cause a voltage spike of 30mV. While this  
does not sound very drastic, with the Vcc for  
microprocessors decreasing at the current rate, this can be  
a fairly large percentage.  
I (Actual)  
Loss  
Angle  
Phase  
Angle  
Another important, often overlooked, reason for knowing the  
parasitic inductance is the calculation of the resonant  
frequency. This can be important for high frequency, by-  
pass capacitors, as the resonant point will give the most  
signal attenuation. The resonant frequency is calculated  
from the simple equation:  
f
V
IRs  
In practice the current leads the voltage by some other phase  
angle due to the series resistance RS. The complement of this  
angle is called the loss angle and:  
fres =  
1
ͱ
2LC  
Insulation Resistance – Insulation Resistance is the  
resistance measured across the terminals of a capacitor and  
consists principally of the parallel resistance RP shown in the  
equivalent circuit. As capacitance values and hence the area  
of dielectric increases, the I.R. decreases and hence the  
product (C x IR or RC) is often specified in ohm farads or  
more commonly megohm-microfarads. Leakage current is  
determined by dividing the rated voltage by IR (Ohm’s Law).  
Power Factor (P.F.) = Cos or Sine  
f
Dissipation Factor (D.F.) = tan ␦  
for small values of the tan and sine are essentially equal  
which has led to the common interchangeability of the two  
terms in the industry.  
Dielectric Strength – Dielectric Strength is an expression  
of the ability of a material to withstand an electrical stress.  
Although dielectric strength is ordinarily expressed in volts, it  
is actually dependent on the thickness of the dielectric and  
thus is also more generically a function of volts/mil.  
Equivalent Series Resistance – The term E.S.R. or  
Equivalent Series Resistance combines all losses both  
series and parallel in a capacitor at a given frequency so  
that the equivalent circuit is reduced to a simple R-C series  
connection.  
Dielectric Absorption – A capacitor does not discharge  
instantaneously upon application of a short circuit, but  
drains gradually after the capacitance proper has been  
discharged. It is common practice to measure the dielectric  
absorption by determining the “reappearing voltage” which  
appears across a capacitor at some point in time after it has  
been fully discharged under short circuit conditions.  
E.S.R.  
C
Dissipation Factor – The DF/PF of a capacitor tells what  
percent of the apparent power input will turn to heat in the  
capacitor.  
Corona – Corona is the ionization of air or other vapors  
which causes them to conduct current. It is especially  
prevalent in high voltage units but can occur with low voltages  
as well where high voltage gradients occur. The energy  
discharged degrades the performance of the capacitor and  
can in time cause catastrophic failures.  
E.S.R.  
XC  
Dissipation Factor =  
= (2 π fC) (E.S.R.)  
The watts loss are:  
Watts loss = (2 π fCV2) (D.F.)  
Very low values of dissipation factor are expressed as their  
reciprocal for convenience. These are called the “Q” or  
Quality factor of capacitors.  
Parasitic Inductance – The parasitic inductance of  
capacitors is becoming more and more important in the  
decoupling of today’s high speed digital systems. The  
relationship between the inductance and the ripple voltage  
induced on the DC voltage line can be seen from the simple  
inductance equation:  
di  
dt  
V = L  
92  
Surface Mounting Guide  
MLC Chip Capacitors  
REFLOW SOLDERING  
Case Size  
0201  
0402  
0603  
0805  
1206  
1210  
1808  
1812  
1825  
2220  
2225  
D1  
D2  
D3  
D4  
D5  
0.85 (0.033)  
1.70 (0.067)  
2.30 (0.091)  
3.00 (0.118)  
4.00 (0.157)  
4.00 (0.157)  
5.60 (0.220)  
5.60 (0.220)  
5.60 (0.220)  
6.60 (0.260)  
6.60 (0.260)  
0.30 (0.012)  
0.60 (0.024)  
0.80 (0.031)  
1.00 (0.039)  
1.00 (0.039)  
1.00 (0.039)  
1.00 (0.039)  
1.00 (0.039)  
1.00 (0.039)  
1.00 (0.039)  
1.00 (0.039)  
0.25 (0.010)  
0.50 (0.020)  
0.70 (0.028)  
1.00 (0.039)  
2.00 (0.079)  
2.00 (0.079)  
3.60 (0.142)  
3.60 (0.142)  
3.60 (0.142)  
4.60 (0.181)  
4.60 (0.181)  
0.30 (0.012)  
0.60 (0.024)  
0.80 (0.031)  
1.00 (0.039)  
1.00 (0.039)  
1.00 (0.039)  
1.00 (0.039)  
1.00 (0.039)  
1.00 (0.039)  
1.00 (0.039)  
1.00 (0.039)  
0.35 (0.014)  
0.50 (0.020)  
0.75 (0.030)  
1.25 (0.049)  
1.60 (0.063)  
2.50 (0.098)  
2.00 (0.079)  
3.00 (0.118)  
6.35 (0.250)  
5.00 (0.197)  
6.35 (0.250)  
D2  
D1  
D3  
D4  
D5  
Dimensions in millimeters (inches)  
Component Pad Design  
Component pads should be designed to achieve good  
solder filets and minimize component movement during  
reflow soldering. Pad designs are given below for the most  
common sizes of multilayer ceramic capacitors for both  
wave and reflow soldering. The basis of these designs is:  
• Pad width equal to component width. It is permissible to  
decrease this to as low as 85ꢀ of component width but it  
is not advisable to go below this.  
• Pad overlap 0.5mm beneath component.  
• Pad extension 0.5mm beyond components for reflow and  
1.0mm for wave soldering.  
WAVE SOLDERING  
D2  
Case Size  
0603  
D1  
D2  
D3  
D4  
D5  
D1  
D3  
D4  
3.10 (0.12)  
4.00 (0.15)  
5.00 (0.19)  
1.20 (0.05)  
1.50 (0.06)  
1.50 (0.06)  
0.70 (0.03)  
1.00 (0.04)  
2.00 (0.09)  
1.20 (0.05)  
1.50 (0.06)  
1.50 (0.06)  
0.75 (0.03)  
1.25 (0.05)  
1.60 (0.06)  
0805  
1206  
Dimensions in millimeters (inches)  
D5  
Component Spacing  
Preheat & Soldering  
For wave soldering components, must be spaced sufficiently  
far apart to avoid bridging or shadowing (inability of solder  
to penetrate properly into small spaces). This is less  
important for reflow soldering but sufficient space must be  
allowed to enable rework should it be required.  
The rate of preheat should not exceed 4ꢁC/second to  
prevent thermal shock. A better maximum figure is about  
2ꢁC/second.  
For capacitors size 1206 and below, with a maximum  
thickness of 1.25mm, it is generally permissible to allow a  
temperature differential from preheat to soldering of 150ꢁC.  
In all other cases this differential should not exceed 100ꢁC.  
For further specific application or process advice, please  
consult AVX.  
Cleaning  
1.5mm (0.06)  
1mm (0.04)  
Care should be taken to ensure that the capacitors are  
thoroughly cleaned of flux residues especially the space  
beneath the capacitor. Such residues may otherwise  
become conductive and effectively offer a low resistance  
bypass to the capacitor.  
1mm (0.04)  
Ultrasonic cleaning is permissible, the recommended  
conditions being 8 Watts/litre at 20-45 kHz, with a process  
cycle of 2 minutes vapor rinse, 2 minutes immersion in the  
ultrasonic solvent bath and finally 2 minutes vapor rinse.  
93  
Surface Mounting Guide  
Recommended Soldering Profiles  
Recommended Reflow Profiles  
Pb Free Recommended  
REFLOW SOLDER PROFILES  
AVX RoHS compliant products utilize termination  
finishes (e.g.Sn or SnAg) that are compatible  
275  
250  
Pb Free Max with care  
Sn Pb Recommended  
225  
with all Pb-Free soldering systems and are fully  
200  
reverse compatible with SnPb soldering systems.  
A recommended SnPb profile is shown for  
comparison; for Pb-Free soldering, IPC/JEDECJ-  
STD-020C may be referenced. The upper line in  
175  
150  
125  
100  
the chart shows the maximum envelope to which  
products are qualified (typically 3x reflow cycles  
75  
at 260ºC max). The center line gives the  
50  
recommended profile for optimum wettability and  
soldering in Pb-Free Systems.  
25  
0
20  
40  
60  
80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 420  
Time / secs  
Preheat:  
The pre-heat stabilizes the part and reduces the  
temperature differential prior to reflow. The initial ramp to  
125ºC may be rapid, but from that point (2-3)ºC/sec is  
recommended to allow ceramic parts to heat uniformly and  
plastic encapsulated parts to stabilize through the glass  
transition temperature of the body (~ 180ºC).  
Wetting Force at 2nd Sec. (higher is better)  
0.40  
0.30  
0.20  
SnPb - Sn60Pb40  
Sn - Sn60Pb40  
0.10  
0.00  
Sn-Sn3.5Ag0.7Cu  
Sn-Sn2.5Ag1Bi0.5Cu  
Sn-Sn0.7Cu  
-0.10  
-0.20  
-0.30  
-0.40  
Reflow:  
In the reflow phase, the maximum recommended time  
ꢃ 230ºC is 40secs. Time at peak reflow is 10secs max.;  
optimum reflow is achieved at 250ºC, (see wetting balance  
chart opposite) but products are qualified to 260ºC max.  
Please reference individual product datasheets for  
maximum limits  
200  
210  
220  
230  
240  
250  
260  
270  
Temperature of Solder [C]  
IMPORTANT NOTE: Typical Pb-Free reflow solders have a  
more dull and grainy appearance compared to traditional  
SnPb. Elevating the reflow temperature will not change this,  
but extending the cool down can help improve the visual  
appearance of the joint.  
Cool Down:  
Cool down should not be forced and 6ºC/sec is  
recommended. A slow cool down will result in a finer grain  
structure of the reflow solder in the solder fillet.  
WAVE SOLDER PROFILES  
For wave solder, there is no change in the recommended  
wave profile; all standard Pb-Free (SnCu/SnCuAg) systems  
operate at the same 260ºC max recommended for SnPb  
systems.  
Recommended Soldering Profiles  
275  
225  
175  
Preheat:  
This is more important for wave solder; a higher  
temperature preheat will reduce the thermal shock to SMD  
parts that are immersed (please consult individual product  
data sheets for SMD parts that are suited to wave solder).  
SMD parts should ideally be heated from the bottom-Side  
prior to wave. PTH (Pin through hole) parts on the topside  
should not be separately heated.  
125  
Wave  
75  
Preheat  
Cool Down  
Wave:  
25  
250ºC – 260ºC recommended for optimum solderability.  
0
50  
100  
150  
200  
250  
300  
350  
400  
Cool Down:  
Time / seconds  
As with reflow solder, cool down should not be forced and  
6ºC/sec is recommended. Any air knives at the end of the  
2nd wave should be heated.  
94  
Surface Mounting Guide  
MLC Chip Capacitors  
Handling  
APPLICATION NOTES  
Chip multilayer ceramic capacitors should be handled with  
care to avoid damage or contamination from perspiration  
and skin oils. The use of tweezers or vacuum pick ups  
is strongly recommended for individual components. Bulk  
handling should ensure that abrasion and mechanical shock  
are minimized. Taped and reeled components provides the  
ideal medium for direct presentation to the placement  
machine. Any mechanical shock should be minimized during  
handling chip multilayer ceramic capacitors.  
Storage  
The components should be stored in their “as received  
packaging” where possible. If the components are removed  
from their original packaging then they should be stored in  
an airtight container (e.g. a heat sealed plastic bag) with  
desiccant (e.g. silica gel). Storage area temperature should  
be kept between +5 degrees C and +30 degrees C with  
humidity ꢂ 70ꢀ RH. Storage atmosphere must be free of  
gas containing sulfur and chlorine. Avoid exposing the  
product to saline moisture or to temperature changes that  
might result in the formation of condensation. To assure  
good solderability performance we recommend that the  
product be used within 6 months from our shipping date,  
but can be used for up to 12 months. Chip capacitors may  
crack if exposed to hydrogen (H2) gas while sealed or if  
coated with silicon, which generates hydrogen gas.  
Preheat  
It is important to avoid the possibility of thermal shock during  
soldering and carefully controlled preheat is therefore  
required. The rate of preheat should not exceed 4ꢁC/second  
and a target figure 2ꢁC/second is recommended. Although  
an 80ꢁC to 120ꢁC temperature differential is preferred, recent  
developments allow a temperature differential between the  
component surface and the soldering temper-ature of 150ꢁC  
(Maximum) for capacitors of 1210 size and below with a  
maximum thickness of 1.25mm. The user is cautioned that  
the risk of thermal shock increases as chip size or  
temperature differential increases.  
Solderability  
Terminations to be well soldered after immersion in a 60/40  
tin/lead solder bath at 235 5ꢁC for 2 1 seconds.  
Leaching  
Terminations will resist leaching for at least the immersion  
times and conditions shown below.  
Soldering  
Mildly activated rosin fluxes are preferred. The minimum  
amount of solder to give a good joint should be used.  
Excessive solder can lead to damage from the stresses  
caused by the difference in coefficients of expansion  
between solder, chip and substrate. AVX terminations are  
suitable for all wave and reflow soldering systems. If hand  
soldering cannot be avoided, the preferred technique is the  
utilization of hot air soldering tools.  
Solder  
Tin/Lead/Silver Temp. °C  
60/40/0 260  
Solder  
Immersion Time  
Seconds  
Termination Type  
Nickel Barrier  
5
30  
1
Lead-Free Wave Soldering  
The recommended peak temperature for lead-free wave  
soldering is 250ꢁC-260ꢁC for 3-5 seconds. The other  
parameters of the profile remains the same as above.  
Cooling  
Natural cooling in air is preferred, as this minimizes stresses  
within the soldered joint. When forced air cooling is used,  
cooling rate should not exceed 4ꢁC/second. Quenching  
is not recommended but if used, maximum temperature  
differentials should be observed according to the preheat  
conditions above.  
The following should be noted by customers changing from  
lead based systems to the new lead free pastes.  
a) The visual standards used for evaluation of solder joints  
will need to be modified as lead free joints are not as  
bright as with tin-lead pastes and the fillet may not be as  
large.  
b) Lead-free solder pastes do not allow the same self  
alignment as lead containing systems. Standard  
mounting pads are acceptable, but machine set up may  
need to be modified.  
Cleaning  
Flux residues may be hygroscopic or acidic and must be  
removed. AVX MLC capacitors are acceptable for use with  
all of the solvents described in the specifications MIL-STD-  
202 and EIA-RS-198. Alcohol based solvents are acceptable  
and properly controlled water cleaning systems are also  
acceptable. Many other solvents have been proven successful,  
and most solvents that are acceptable to other components  
on circuit assemblies are equally acceptable for use with  
ceramic capacitors.  
General  
Surface mounting chip multilayer ceramic capacitors  
are designed for soldering to printed circuit boards or other  
substrates. The construction of the components is such that  
they will withstand the time/temperature profiles used in both  
wave and reflow soldering methods.  
95  
Surface Mounting Guide  
MLC Chip Capacitors  
POST SOLDER HANDLING  
Once SMP components are soldered to the board, any  
bending or flexure of the PCB applies stresses to the  
soldered joints of the components. For leaded devices, the  
stresses are absorbed by the compliancy of the metal leads  
and generally don’t result in problems unless the stress is  
large enough to fracture the soldered connection.  
Ceramic capacitors are more susceptible to such stress  
because they don’t have compliant leads and are brittle in  
nature. The most frequent failure mode is low DC resistance  
or short circuit. The second failure mode is significant loss of  
capacitance due to severing of contact between sets of the  
internal electrodes.  
Type A:  
Angled crack between bottom of device to top of solder joint.  
Cracks caused by mechanical flexure are very easily  
identified and generally take one of the following two general  
forms:  
Mechanical cracks are often hidden underneath the  
termination and are difficult to see externally. However, if one  
end termination falls off during the removal process from  
PCB, this is one indication that the cause of failure was  
excessive mechanical stress due to board warping.  
Type B:  
Fracture from top of device to bottom of device.  
96  
Surface Mounting Guide  
MLC Chip Capacitors  
COMMON CAUSES OF  
REWORKING OF MLCs  
MECHANICAL CRACKING  
Thermal shock is common in MLCs that are manually  
attached or reworked with a soldering iron. AVX strongly  
recommends that any reworking of MLCs be done with hot  
air reflow rather than soldering irons. It is practically  
impossible to cause any thermal shock in ceramic  
capacitors when using hot air reflow.  
The most common source for mechanical stress is board  
depanelization equipment, such as manual breakapart, v-  
cutters and shear presses. Improperly aligned or dull cutters  
may cause torqueing of the PCB resulting in flex stresses  
being transmitted to components near the board edge.  
Another common source of flexural stress is contact during  
parametric testing when test points are probed. If the PCB  
is allowed to flex during the test cycle, nearby ceramic  
capacitors may be broken.  
However direct contact by the soldering iron tip often  
causes thermal cracks that may fail at a later date. If rework  
by soldering iron is absolutely necessary, it is recommended  
that the wattage of the iron be less than 30 watts and the  
tip temperature be ꢂ300ºC. Rework should be performed by  
applying the solder iron tip to the pad and not directly  
contacting any part of the ceramic capacitor.  
A third common source is board to board connections at  
vertical connectors where cables or other PCBs are  
connected to the PCB. If the board is not supported during  
the plug/unplug cycle, it may flex and cause damage to  
nearby components.  
Special care should also be taken when handling large (ꢃ6"  
on a side) PCBs since they more easily flex or warp than  
smaller boards.  
Solder Tip  
Solder Tip  
Preferred Method - No Direct Part Contact  
Poor Method - Direct Contact with Part  
PCB BOARD DESIGN  
To avoid many of the handling problems, AVX recommends that MLCs be located at least .2" away from nearest edge of board.  
However when this is not possible, AVX recommends that the panel be routed along the cut line, adjacent to where the MLC is  
located.  
No Stress Relief for MLCs  
Routed Cut Line Relieves Stress on MLC  
97  
AMERICAS  
EUROPE  
ASIA-PACIFIC  
ASIA-KED  
(KYOCERA Electronic Devices)  
AVX Myrtle Beach, SC  
Tel: 843-448-9411  
AVX/Kyocera (S) Pte Ltd.,  
Singapore  
KED Hong Kong Ltd.  
Tel: +852-2305-1080/1223  
AVX Limited, England  
Tel: +44-1252-770000  
Tel: +65-6286-7555  
AVX Northwest, WA  
Tel: 360-699-8746  
AVX S.A.S., France  
Tel: +33-1-69-18-46-00  
KED Hong Kong Ltd.  
Shenzen  
Tel: +86-755-3398-9600  
AVX/Kyocera, Asia, Ltd.,  
Hong Kong  
AVX Midwest, IN  
Tel: 317-861-9184  
AVX GmbH, Germany  
Tel: +49-8131-9004-0  
Tel: +852-2363-3303  
KED Company Ltd.  
Shanghai  
Tel: +86-21-6217-1201  
AVX/Kyocera Yuhan Hoesa,  
South Korea  
AVX Mid/Pacific, CA  
Tel: 408-988-4900  
AVX SRL, Italy  
Tel: +39-02-614-571  
Tel: +82-2785-6504  
KED Hong Kong Ltd.  
Beijing  
Tel: +86-10-5869-4655  
AVX Northeast, MA  
Tel: 617-479-0345  
AVX/Kyocera HK Ltd.,  
Taiwan  
Tel: +886-2-2698-8778  
AVX Czech Republic  
Tel: +420-57-57-57-521  
AVX/ELCO UK  
Tel: +44-1638-675000  
AVX Southwest, CA  
Tel: 949-859-9509  
KED Taiwan Ltd.  
Tel: +886-2-2950-0268  
AVX/Kyocera (M) Sdn Bhd,  
Malaysia  
Tel: +60-4228-1190  
ELCO Europe GmbH  
Tel: +49-2741-299-0  
AVX Canada  
Tel: 905-238-3151  
KED Korea Yuhan Hoesa,  
South Korea  
Tel: +82-2-783-3604/6126  
AVX/Kyocera International  
Trading Co. Ltd.,  
Shanghai  
AVX South America  
Tel: +55-11-4688-1960  
AVX S.A., Spain  
Tel: +34-91-63-97-197  
KED (S) Pte Ltd.  
Singapore  
Tel: +86-21-6215-5588  
AVX Benelux  
Tel: +31-187-489-337  
AVX/Kyocera Asia Ltd.,  
Shenzen  
Tel: +65-6509-0328  
Kyocera Corporation  
Japan  
Tel: +81-75-604-3449  
Tel: +86-755-3336-0615  
AVX/Kyocera International  
Trading Co. Ltd.,  
Beijing  
Tel: +86-10-6588-3528  
AVX/Kyocera India  
Liaison Office  
Tel: +91-80-6450-0715  
Contact:  
A KYOCERA GROUP COMPANY  
http://www.avx.com  
S-MLCC0M409-C  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY